Advertisement

Renal Access for PCNL: The Smaller the Better?

  • Bum Soo KimEmail author
  • Hyuk Jin Cho
Chapter

Abstract

Although percutaneous nephrolithotomy (PCNL) has been considered as the gold standard for management of large renal stones, several issues such as severe complications and morbidity associated with renal access remain a matter of debate. To overcome these issues, many urologists investigated the risk factors of high morbidity and hypothesized that large tract size for renal access can be one of the major factors related to significant complications. Hence, there have been many endeavors and investigations to reduce the size of renal access tracts and to confirm the effectiveness and safety of smaller tract size for PCNL. Currently, miniaturized PCNL using a smaller nephrostomy tract for renal access has gained wide acceptance for the surgical treatment of small- or medium-sized renal stones; however, the efficacy of mini-PCNL is still controversial. In this chapter, we will review the recent literature related to miniaturized PCNL, such as mini-, ultramini-, and micro-PCNL, and discuss the practical advantages and drawbacks of these procedures compared to those of conventional PCNL.

Keywords

Percutaneous nephrolithotomy Kidney stone Mini-PCNL Renal access Bleeding 

References

  1. Bader MJ, Gratzke C, Seitz M, et al. The "all-seeing needle": initial results of an optical puncture system confirming access in percutaneous nephrolithotomy. Eur Urol. 2011;59:1054–9.CrossRefGoogle Scholar
  2. Basiri A, Ziaee AM, Kianian HR, et al. Ultrasonographic versus fluoroscopic access for percutaneous nephrolithotomy: a randomized clinical trial. J Endourol. 2008;22:281–4.CrossRefGoogle Scholar
  3. Cheng F, Yu W, Zhang X, et al. Minimally invasive tract in percutaneous nephrolithotomy for renal stones. J Endourol. 2010;24:1579–82.CrossRefGoogle Scholar
  4. Desai MR, Ganpule AP. Miniaturized percutaneous nephrolithotomy: a decade of paradigm shift in percutaneous renal access. Eur Urol. 2017;72(2):236–7.CrossRefGoogle Scholar
  5. Desai MR, Sharma R, Mishra S, et al. Single-step percutaneous nephrolithotomy (microperc): the initial clinical report. J Urol. 2011;186:140–5.CrossRefGoogle Scholar
  6. Desai J, Solanki R. Ultra-mini percutaneous nephrolithotomy (UMP): one more armamentarium. BJU Int. 2013;112:1046–9.PubMedGoogle Scholar
  7. Duvdevani M, Razvi H, Sofer M, et al. Third prize: contemporary percutaneous nephrolithotripsy: 1585 procedures in 1338 consecutive patients. J Endourol. 2007;21:824–9.CrossRefGoogle Scholar
  8. Ghani KR, Patel U, Anson K. Computed tomography for percutaneous renal access. J Endourol. 2009;23:1633–9.CrossRefGoogle Scholar
  9. Giusti G, Piccinelli A, Taverna G, et al. Miniperc? No, thank you! Eur Urol. 2007;51:810–4. discussion 815.CrossRefGoogle Scholar
  10. Grasso M, Lang G, Taylor FC. Flexible ureteroscopically assisted percutaneous renal access. Tech Urol. 1995;1:39–43.PubMedGoogle Scholar
  11. Hagspiel KD, Kandarpa K, Silverman SG. Interactive MR-guided percutaneous nephrostomy. J Magn Reson Imaging. 1998;8:1319–22.CrossRefGoogle Scholar
  12. Helal M, Black T, Lockhart J, et al. The Hickman peel-away sheath: alternative for pediatric percutaneous nephrolithotomy. J Endourol. 1997;11:171–2.CrossRefGoogle Scholar
  13. Hesse A, Brandle E, Wilbert D, et al. Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur Urol. 2003;44:709–13.CrossRefGoogle Scholar
  14. Hosseini MM, Hassanpour A, Farzan R, et al. Ultrasonography-guided percutaneous nephrolithotomy. J Endourol. 2009;23:603–7.CrossRefGoogle Scholar
  15. Hunter PT, Hawkins IF, Finlayson B, et al. Hawkins-Hunter retrograde transcutaneous nephrostomy: a new technique. Urology. 1983;22:583–7.CrossRefGoogle Scholar
  16. Jackman SV, Docimo SG, Cadeddu JA, et al. The "mini-perc" technique: a less invasive alternative to percutaneous nephrolithotomy. World J Urol. 1998;16:371–4.CrossRefGoogle Scholar
  17. Karakose A, Aydogdu O, Atesci YZ. The use of the amplatz sheath in percutaneous nephrolithotomy: does amplatz sheath size matter? Curr Urol. 2013;7:127–31.CrossRefGoogle Scholar
  18. Karami H, Arbab AH, Rezaei A, et al. Percutaneous nephrolithotomy with ultrasonography-guided renal access in the lateral decubitus flank position. J Endourol. 2009;23:33–5.CrossRefGoogle Scholar
  19. Kariniemi J, Sequeiros RB, Ojala R, et al. MRI-guided percutaneous nephrostomy: a feasibility study. Eur Radiol. 2009;19:1296–301.CrossRefGoogle Scholar
  20. Kidd CF, Conlin MJ. Ureteroscopically assisted percutaneous renal access. Urology. 2003;61:1244–5.CrossRefGoogle Scholar
  21. Knoll T, Wezel F, Michel MS, et al. Do patients benefit from miniaturized tubeless percutaneous nephrolithotomy? A comparative prospective study. J Endourol. 2010;24:1075–9.CrossRefGoogle Scholar
  22. Kukreja R, Desai M, Patel S, et al. Factors affecting blood loss during percutaneous nephrolithotomy: prospective study. J Endourol. 2004;18:715–22.CrossRefGoogle Scholar
  23. Lang EK. Percutaneous nephrostolithotomy and lithotripsy: a multi-institutional survey of complications. Radiology. 1987;162:25–30.CrossRefGoogle Scholar
  24. Lawson RK, Murphy JB, Taylor AJ, et al. Retrograde method for percutaneous access to kidney. Urology. 1983;22:580–2.CrossRefGoogle Scholar
  25. Lee WJ, Smith AD, Cubelli V, et al. Complications of percutaneous nephrolithotomy. AJR Am J Roentgenol. 1987;148:177–80.CrossRefGoogle Scholar
  26. Li LY, Gao X, Yang M, et al. Does a smaller tract in percutaneous nephrolithotomy contribute to less invasiveness? A prospective comparative study. Urology. 2010;75:56–61.CrossRefGoogle Scholar
  27. Liu L, Zheng S, Xu Y, et al. Systematic review and meta-analysis of percutaneous nephrolithotomy for patients in the supine versus prone position. J Endourol. 2010;24:1941–6.CrossRefGoogle Scholar
  28. Mager R, Balzereit C, Gust K, et al. The hydrodynamic basis of the vacuum cleaner effect in continuous-flow PCNL instruments: an empiric approach and mathematical model. World J Urol. 2016;34:717–24.CrossRefGoogle Scholar
  29. Matlaga BR, Shah OD, Zagoria RJ, et al. Computerized tomography guided access for percutaneous nephrostolithotomy. J Urol. 2003;170:45–7.CrossRefGoogle Scholar
  30. Mishra S, Sharma R, Garg C, et al. Prospective comparative study of miniperc and standard PNL for treatment of 1 to 2 cm size renal stone. BJU Int. 2011;108:896–9. discussion 899-900.PubMedGoogle Scholar
  31. Nagele U, Nicklas A. Vacuum cleaner effect, purging effect, active and passive wash out: a new terminology in hydrodynamic stone retrival is arising—does it affect our endourologic routine? World J Urol. 2016;34:143–4.CrossRefGoogle Scholar
  32. Nicklas AP, Schilling D, Bader MJ, et al. The vacuum cleaner effect in minimally invasive percutaneous nephrolitholapaxy. World J Urol. 2015;33:1847–53.CrossRefGoogle Scholar
  33. Park S, Pearle MS. Imaging for percutaneous renal access and management of renal calculi. Urol Clin North Am. 2006;33:353–64.CrossRefGoogle Scholar
  34. Radecka E, Brehmer M, Holmgren K, et al. Complications associated with percutaneous nephrolithotripsy: supra- versus subcostal access. A retrospective study. Acta Radiol. 2003;44:447–51.PubMedGoogle Scholar
  35. Ruhayel Y, Tepeler A, Dabestani S, et al. Tract sizes in miniaturized percutaneous nephrolithotomy: a systematic review from the European Association of Urology Urolithiasis Guidelines Panel. Eur Urol. 2017;72(2):220–35.CrossRefGoogle Scholar
  36. Tepeler A, Akman T, Silay MS, et al. Comparison of intrarenal pelvic pressure during micro-percutaneous nephrolithotomy and conventional percutaneous nephrolithotomy. Urolithiasis. 2014;42:275–9.CrossRefGoogle Scholar
  37. Traxer O, Smith TG 3rd, Pearle MS, et al. Renal parenchymal injury after standard and mini percutaneous nephrostolithotomy. J Urol. 2001;165:1693–5.CrossRefGoogle Scholar
  38. Xu S, Shi H, Zhu J, et al. A prospective comparative study of haemodynamic, electrolyte, and metabolic changes during percutaneous nephrolithotomy and minimally invasive percutaneous nephrolithotomy. World J Urol. 2014;32:1275–80.CrossRefGoogle Scholar
  39. Yamaguchi A, Skolarikos A, Buchholz NP, et al. Operating times and bleeding complications in percutaneous nephrolithotomy: a comparison of tract dilation methods in 5,537 patients in the Clinical Research Office of the Endourological Society Percutaneous Nephrolithotomy Global Study. J Endourol. 2011;25:933–9.CrossRefGoogle Scholar
  40. Yuan D, Liu Y, Rao H, et al. Supine versus prone position in percutaneous nephrolithotomy for kidney calculi: a meta-analysis. J Endourol. 2016;30:754–63.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Urology, School of MedicineKyungpook National UniversityDaeguSouth Korea
  2. 2.Department of Urology, College of MedicineThe Catholic University of KoreaSeoulSouth Korea

Personalised recommendations