Performance Evaluation of Unitary Measurement Matrix in Compressed Data Gathering for Real-Time Wireless Sensor Network Applications

  • Prateek DolasEmail author
  • D. Ghosh


Recently, compressed sensing has emerged as a novel phenomenon of simultaneous sampling and compressing any sparse signal. Wireless sensor network which is resource constrained requires to preserve its energy by various mechanisms. Each sensor node in wireless sensor network records the data in its surrounding which generates number of signals in the entire network. Communication process consumes maximum energy in the network as compared to other in network processes. So, energy may be preserved by reducing data rate in network by using distributed compressed sensing. In this paper, we propose to use a unitary matrix as measurement matrix to perform distributed compressed sensing to exploit both spatial and temporal correlation in sensor network data. The parameters used for measuring performance of the proposed scheme are the percentage by which overall network lifetime increases and the mean squared error in reconstruction of the original signal from compressed signal at the sink.


Compressed sensing Measurement matrix Data gathering Wireless sensor networks 


  1. 1.
    Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38(4), 393–422. URL: Scholar
  2. 2.
    Biagioni, E. S., & Bridges, K. (2002). The application of remote sensor technology to assist the recovery of rare and endangered species. The International Journal of High Performance Computing Applications, 16(3), 315–324. Scholar
  3. 3.
    Dhaka, V. S., & Vyas, S. (2014). The use and industrial importance of virtual databases.Google Scholar
  4. 4.
    Gungor, V. C., & Hancke, G. P. (2009). Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Transactions on Industrial Electronics, 56(10), 4258–4265. Scholar
  5. 5.
    Kandukuri, S., Lebreton, J., Lorion, R., Murad, N., & Lan-Sun-Luk, J. D. (2016). Energy efficient data aggregation techniques for exploiting spatio-temporal correlations in wireless sensor networks. In 2016 Wireless Telecommunications Symposium (WTS), pp. 1–6.
  6. 6.
    Vyas, V., Saxena, S., & Bhargava, D. (2015). Mind reading by face recognition using security enhancement model. In Proceedings of Fourth International Conference on Soft Computing for Problem Solving (pp. 173–180). New Delhi: Springer.Google Scholar
  7. 7.
    Haviv, I., & Regev, O. (2016). The restricted isometry property of subsampled Fourier matrices. In Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’16 (pp. 288–297). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. URL:
  8. 8.
    Bhargava, D., & Sinha, M. (2012, May). Performance analysis of agent based IPSM. In 2012 International Joint Conference on Computer Science and Software Engineering (JCSSE) (pp. 253–258). IEEE.Google Scholar
  9. 9.
    Bhargava, D. (2017). Intelligent agents and autonomous robots. In Detecting and mitigating robotic cyber security risks (pp. 275–283). IGI Global.Google Scholar
  10. 10.
    Dhaka, V. S., & Vyas, S. (2014). Analysis of server performance with different techniques of virtual databases. Journal of Emerging Trends in Computing and Information Sciences, 5(10).Google Scholar
  11. 11.
    Candes, E. J. (2006). Compressive sampling. In International Congress of Mathematicians (Vol. 3, pp. 1433–1452).Google Scholar
  12. 12.
    Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306. Scholar
  13. 13.
    Candes, E. J., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203–4215. Scholar
  14. 14.
    Davis, G., Mallat, S., & Avellaneda, M. (1997). Adaptive greedy approximations. Constructive Approximation, 13(1), 57–98. Scholar
  15. 15.
    Bhargava, D., & Sinha, M. (2012). Design and implementation of agent based inter process synchronization manager. International Journal of Computers and Applications, 46(21), 17–22.Google Scholar
  16. 16.
    Chen, S. S., Donoho, D. L., & Saunders, M. A. (2001). Atomic decomposition by basis pursuit. SIAM Review, 43(1), 129–159.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gorodnitsky, I. F., & Rao, B. D. (1997). Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 45(3), 600–616.CrossRefGoogle Scholar
  18. 18.
    Vyas, S., & Vaishnav, P. (2017). A comparative study of various ETL process and their testing techniques in data warehouse. Journal of Statistics and Management Systems, 20(4), 753–763.CrossRefGoogle Scholar
  19. 19.
    Liu, C., Wu, K., & Pei, J. (2007). An energy-efficient data collection framework for wireless sensor networks by exploiting spatiotemporal correlation. IEEE Transactions on Parallel and Distributed Systems, 18(7), 1010–1023. Scholar
  20. 20.
    Agrawal, C., & Ghosh, D. (2012). Distributed compressive data gathering in wireless sensor networks. In 2012 IEEE 11th International Conference on Signal Processing (ICSP) (Vol. 3, pp. 2110–2115).
  21. 21.
    Bajwa, W. U., Sayeed, A. M., & Nowak, R. (2009). A restricted isometry property for structurally-subsampled unitary matrices. In 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 1005–1012).
  22. 22.
    Purohit, R., & Bhargava, D. (2017). An illustration to secured way of data mining using privacy preserving data mining. Journal of Statistics and Management Systems, 20(4), 637–645.CrossRefGoogle Scholar
  23. 23.
    Luo, C., Wu, F., Sun, J., & Chen, C.W. (2009). Compressive data gathering for largescale wireless sensor networks. In Proceedings of the 15th Annual International Conference on Mobile Computing and Networking, MobiCom’09 (pp. 145–156). New York, NY, USA: ACM. URL:
  24. 24.
    Mao, X., Miao, X., He, Y., Li, X. Y., & Liu, Y. (2012). Citysee: Urban CO2 monitoring with sensors. In 2012 Proceedings IEEE INFOCOM (pp. 1611–1619).
  25. 25.
    Siavoshi, S., Kavian, Y. S., & Sharif, H. (2016). Load-balanced energy efficient clustering protocol for wireless sensor networks. IET Wireless Sensor Systems, 6(3), 67–73. Scholar
  26. 26.
    Tan, L., & Wu, M. (2016). Data reduction in wireless sensor networks: A hierarchical LMS prediction approach. IEEE Sensors Journal, 16(6), 1708–1715. Scholar
  27. 27.
    Kumar, N., & Bhargava, D. (2017). A scheme of features fusion for facial expression analysis: A facial action recognition. Journal of Statistics and Management Systems, 20(4), 693–701.CrossRefGoogle Scholar
  28. 28.
    Bhargava, D., & Sinha, M. (2013). Performance analysis of agent based IPSM for windows based operating systems. International Journal of Soft Computing and Engineering (IJSCE).Google Scholar
  29. 29.
    Tropp, J. A., Gilbert, A. C., & Strauss, M. J. (2006). Algorithms for simultaneous sparse approximation: Part I: Greedy pursuit. Signal Process, 86(3), 572–588.CrossRefGoogle Scholar
  30. 30.
    Wakin, M. B., Duarte, M. F., Sarvotham, S., Baron, D., & Baraniuk, R. G. (2005). Recovery of jointly sparse signals from few random projections. In Proceedings of the 18th International Conference on Neural Information Processing Systems, NIPS’05 (pp. 1433–1440). Cambridge, MA, USA: MIT Press.Google Scholar
  31. 31.
    Wang, J., Liu, Y., & Das, S. K. (2010). Energy-efficient data gathering in wireless sensor networks with asynchronous sampling. ACM Transactions on Sensor Networks, 6(3), 22:1–22:37. URL: Scholar
  32. 32.
    Youness, N., & Hassan, K. (2014). Energy preservation in large-scale wireless sensor network utilizing distributed compressive sensing. In 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 251–256).

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations