A Multiband Octagonal Slot Patch Antenna for Various Wireless Applications
Chapter
First Online:
Abstract
Keeping under thought request of multiband execution, a scaled down octagonal slot rectangular patch antenna is proposed adopting defected ground structure. Reenacted on FR4 (Ɛr = 4.4), the extent of proposed configuration is 30 × 35 × 1.6 mm. The radiator is triggered by a 50 Ω microstrip feed line. The antenna spread out its energy in three bands viz. IEEE 802.11b/Bluetooth; HiperLAN2 and IEEE802.11a/WiMAX. Different traits, for example, return loss, surface current, radiation pattern and VSWR are additionally analyzed and discussed
Keywords
Octagonal slot Microstrip patch Multiband Wireless applicationsReferences
- 1.Pattnaik, S. S., Panda, D. C., & Devi, S. (2002). Radiation resistance of coax-fed rectangular microstrip patch antenna using artificial neural networks. Microwave and Optical Technology Letters, 34(15), 51–53.CrossRefGoogle Scholar
- 2.Dechamps, G., & Sichak, W. (1953). Microstrip microwave antennas. In Proceedings of Third Symposium on USAF Antenna Research and Development Program, 18–22 October 1953.Google Scholar
- 3.Munson, R. E. (1972). Microstrip phased array antennas. In Proceedings of Twenty-Second Symposium on USAF Antenna Research and Development Program, October 1972.Google Scholar
- 4.Munson, R. E. (1974). Conformal microstrip antennas and microstrip phased arrays. IEEE Transactions on Antennas and Propagation, AP-22(1), 74–78.CrossRefGoogle Scholar
- 5.Sanchez-Hernandez, D., & Robertson, I. D. (1996). A survey of broadband microstrip patch antennas. Microwave Journal, 60–84.Google Scholar
- 6.Neog, D. K., Pattnaik, S. S., Panda, D. C., Devi, S., Khuntia, B., & Dutta, M. (2005). Design of a wideband microstrip antenna and the use of artificial neural networks in parameter calculation. IEEE Antennas and Propagation Magazine, 47(3) (June 2005).CrossRefGoogle Scholar
- 7.Yang, F., Zhang, X., Ye, X., & Rahmat- Samii, Y. (2001). Wide-band E shaped patch antenna as for wireless communication. IEEE Transactions on Antennas and Propagation, 49(7), 1094–1100.CrossRefGoogle Scholar
- 8.Ge, Y., Esselle, K., & Bird, T. (2004). E-shaped patch antennas for high speed wireless networks. IEEE Transactions on Antennas and Propagation, 52(12), 3213–3219.CrossRefGoogle Scholar
- 9.Yang, F., Zhang, X., Ye, X., & Rahmat-Samii, Y. (2001). Wide–band E shaped patch antennas for wireless communication. IEEE Transactions on Antennas and Propogation, 49(7), 1094–1100.CrossRefGoogle Scholar
- 10.Patel, S. S., & Kosta, Y. P. (2011). Multiband PBG suspended patch antenna. In 3rd International Conference on Electronics and Computer Techology (Vol. 2, p. 59).Google Scholar
- 11.Ryu, H. C., ahn, H. R., Lee, S. H., & Park, W. S. (2002). Triple-stacked microstrip patch antenna for multiband system. Electronics Letters, 38(24), 1496–1497.CrossRefGoogle Scholar
- 12.Muthili, P., Cherian, P., Mridula, S., & Paul, D. (2009). Design of a compact multi-band microstrip antenna. In: 2009 Annual India Conference, pp. 1–4.Google Scholar
- 13.Cheng, S., Hallbjorner, P., & Rydberg, (2008). A printed slot planar inverted cone antenna for ultra wideband applications. IEEE Antennas Wireless Propagation Letters, 7, 411–413.CrossRefGoogle Scholar
- 14.Peroulis, D., Sarabandi, K., & Katehi, L. B. P. (2005). Design of reconfigurable slot antennas. IEEE Transactions on Antennas Propagation, 53(7), 645–654.CrossRefGoogle Scholar
- 15.Okabe, H., Takei, K. (2001). Tunable antenna system for 1.9 GHz PCS handsets. In IEEE Antennas and Propagation Society International Symposium (Vol. 1, pp. 166169).Google Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2019