Advertisement

The Impact of Quantum Confinement Effects on Electrical Properties of InAs Nanowires

  • Mengqi FuEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

To suppress short channel effects, lower off-state leakage current and enhance gate coupling efficiency, InAs nanowires (NWs) with diameter smaller than 10 nm could be needed in field-effect transistors (FETs) as the channel length scales down to tens of nanometers to improve the performance and increase the integration. In this chapter, we report FETs based on ultrathin wurtzite-structured InAs NWs, with the smallest NW diameter being 7.2 nm. The FETs based on ultrathin NWs exhibit high Ion/Ioff ratios of up to 2 × 108, small subthreshold swings of down to 120 mV/decade, and operate in enhancement-mode. The performance of the devices changes as a function of the diameter of the InAs NWs. The advantage and challenge of the FETs based on ultrathin NWs are discussed.

Keywords

InAs nanowires Diameter-dependent Electrical properties Scaling down 

References

  1. 1.
    Pan D, Fu M, Yu X et al (2014) Controlled synthesis of phase-pure InAs nanowires on Si(111) by diminishing the diameter to 10 nm. Nano Lett 14(3):1214–1220ADSCrossRefGoogle Scholar
  2. 2.
    Dey AW, Thelander C, Lind E et al (2012) High-performance InAs nanowire MOSFETs. IEEE Electron Device Lett 33(6):791–793ADSCrossRefGoogle Scholar
  3. 3.
    Dey AW, Svensson J, Borg BM et al (2012) Single InAs/GaSb nanowire low-power CMOS inverter. Nano Lett 12(11):5593–5597ADSCrossRefGoogle Scholar
  4. 4.
    Jiang X, Xiong Q, Nam S et al (2007) InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett 7(10):3214–3218ADSCrossRefGoogle Scholar
  5. 5.
    Thelander C, FrobergFroberg LE, Rehnstedt C et al (2008) Vertical enhancement-mode InAs nanowire field-effect transistor with 50-nm wrap gate. IEEE Electron Device Lett 29(3):206–208ADSCrossRefGoogle Scholar
  6. 6.
    Hjort M, Lehmann S, Knutsson J et al (2014) Electronic and structural differences between wurtzite and zinc blende InAs Nanowire surfaces: experiment and theory. ACS Nano 8(12):12346–12355CrossRefGoogle Scholar
  7. 7.
    Dayeh SA, Soci C, Yu PKL et al (2007) Transport properties of InAs nanowire field effect transistors: the effects of surface states. J Vacuum Sci Technol B: Microelectron Nanometer Struct 25(4):1432ADSCrossRefGoogle Scholar
  8. 8.
    Takei K, Chuang S, Fang H et al (2011) Benchmarking the performance of ultrathin body InAs-on-insulator transistors as a function of body thickness. Appl Phys Lett 99(10):103507ADSCrossRefGoogle Scholar
  9. 9.
    Zhao Y, Candebat D, Delker C et al (2012) Understanding the impact of Schottky barriers on the performance of narrow bandgap nanowire field effect transistors. Nano Lett 12(10):5331–5336ADSCrossRefGoogle Scholar
  10. 10.
    Nilsson HA, Caroff P, Thelander C et al (2010) Temperature dependent properties of InSb and InAs nanowire field-effect transistors. Appl Phys Lett 96(15):153505ADSCrossRefGoogle Scholar
  11. 11.
    Das SR, Delker CJ, Zakharov D et al (2011) Room temperature device performance of electrodeposited InSb nanowire field effect transistors. Appl Phys Lett 98(24):243504ADSCrossRefGoogle Scholar
  12. 12.
    Paul RK, Penchev M, Zhong J et al (2010) Chemical vapor deposition and electrical characterization of sub-10 nm diameter InSb nanowires and field-effect transistors. Mater Chem Phys 121(3):397–401CrossRefGoogle Scholar
  13. 13.
    Javey A, Guo J, Farmer DB et al (2004) Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett 4(7):1319–1322ADSCrossRefGoogle Scholar
  14. 14.
    Niquet Y, Lherbier A, Quang N et al (2006) Electronic structure of semiconductor nanowires. Phys Rev B 73(16)Google Scholar
  15. 15.
    Ford AC, Kumar SB, Kapadia R et al (2012) Observation of degenerate one-dimensional sub-bands in cylindrical InAs nanowires. Nano Lett 12(3):1340–1343ADSCrossRefGoogle Scholar
  16. 16.
    Wang F, Yu H, Jeong S et al (2008) The scaling of the effective band gaps in indium–arsenide quantum dots and wires. ACS Nano 2(9):1903–1913CrossRefGoogle Scholar
  17. 17.
    Mohney SE, Wang Y, Cabassi MA et al (2005) Measuring the specific contact resistance of contacts to semiconductor nanowires. Solid State Electron 49(2):227–232ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of KonstanzKonstanzGermany

Personalised recommendations