Fabrication, Characterization and Parameter Extraction of InAs Nanowire-Based Device

  • Mengqi FuEmail author
Part of the Springer Theses book series (Springer Theses)


Nanofabrication, low noise electrical measurement and various nanoscale characterization methods are frequently used in the study. This chapter will give as introduction on the growth method, fabrication techniques, characterization methods of materials and devices, measurement systems, and way to extract the electrical parameters of InAs nanowires FET devices.


Fabrication of nanowire devices Electrical measurement Parameter extraction Structural characterization  


  1. 1.
    Krogstrup P, Jørgensen HI, Johnson E et al (2013) Advances in the theory of III–V nanowire growth dynamics. J Phys D Appl Phys 46(31):313001CrossRefGoogle Scholar
  2. 2.
    de la Mata M, Zhou X, Furtmayr F et al (2013) A review of MBE grown 0D, 1D and 2D quantum structures in a nanowire. J Mat Chem C 1(28):4300Google Scholar
  3. 3.
    Fan HJ, Werner P, Zacharias M (2006) Semiconductor nanowires: from self-organization to patterned growth, small 2(6):700–717Google Scholar
  4. 4.
    Fortuna SA, Li X (2010) Metal-catalyzed semiconductor nanowires: a review on the control of growth directions. Semicond Sci Technol 25(2):024005ADSCrossRefGoogle Scholar
  5. 5.
    Zhang Y, Aagesen M, Holm JV et al (2013) GaAsP nanowires grown on silicon substrates by solid-source molecular beam epitaxy. Nano Letter 13(8):3897–3902ADSCrossRefGoogle Scholar
  6. 6.
    Messing ME, Hillerich K, Johansson J et al (2009) The use of gold for fabrication of nanowire structures. Gold Bull 42(3)Google Scholar
  7. 7.
    Thelander C, Caroff P, Plissard SB et al (2011) Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett 11(6), 2424–2429Google Scholar
  8. 8.
    Joyce HJ, Gao Q, Hoe Tan H et al (2011) III–V semiconductor nanowires for optoelectronic device applications. Progr Quantum Electro 35(2–3):23–75Google Scholar
  9. 9.
    Dimakis E, Lähnemann J, Jahn U et al (2011) Self-assisted nucleation and vapor-solid growth of InAs nanowires on bare Si(111). Cryst Growth Des 11(9):4001–4008CrossRefGoogle Scholar
  10. 10.
    Ghalamestani SG, Johansson S, Borg BM et al (2012) Uniform and position-controlled InAs nanowires on 2″ Si substrates for transistor applications. Nanotechnology 23(1):015302ADSCrossRefGoogle Scholar
  11. 11.
    Pan D, Fu M, Yu X et al (2014) Controlled synthesis of phase-pure InAs nanowires on Si(111) by diminishing the diameter to 10 nm. Nano Lett 14(3):1214–1220ADSCrossRefGoogle Scholar
  12. 12.
    Colinge J-P, Lee C-W, Afzalian A et al (2010) Nanowire transistors without junctions. Nat Nanotechnol 5(3):225–229ADSCrossRefGoogle Scholar
  13. 13.
    Ferain I, Colinge CA, Colinge JP (2011) Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479(7373):310–316ADSCrossRefGoogle Scholar
  14. 14.
    Oktyabrsky S, Ye PD (2010) Fundamentals of III-V semiconductor MOSFETs. Springer, New YorkCrossRefGoogle Scholar
  15. 15.
    Nilsson HA, Caroff P, Thelander C et al (2010) Temperature dependent properties of InSb and InAs nanowire field-effect transistors. Appl Phys Lett 96(15):153505ADSCrossRefGoogle Scholar
  16. 16.
    Dayeh SA, Aplin DP, Zhou X et al (2007) High electron mobility InAs nanowire field-effect transistors. Small 3(2):326–332CrossRefGoogle Scholar
  17. 17.
    Ullah AR, Joyce HJ, Burke AM et al (2013) Electronic comparison of InAs wurtzite and zincblende phases using nanowire transistors. Physica Status Solidi—Rapid Res Lett 7(10):911–914Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of KonstanzKonstanzGermany

Personalised recommendations