Advertisement

Introduction

  • Mengqi Fu
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

As the miniaturization and integration of solid-state electronic devices has continued to increase rapidly with the demands of high speed, low power consumption and high storage density, the conventional Si-based technology has lost their advantages on fabrication process. Therefore the technologies based on new materials gradually attract researchers’ attention. Among them, Indium Arsenide (InAs) nanowires (NWs) with high electron mobility is one of the most promising candidate. In this chapter, we introduce the advantages of InAs nanowire on electronic devices and the development status of InAs nanowire electronic devices. Also, the topic ideas and chapter arrangements of this thesis are presented.

References

  1. 1.
    Ferain I, Colinge CA, Colinge JP (2011) Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479(7373):310–316ADSCrossRefGoogle Scholar
  2. 2.
    Frank DJ (2002) Power-constrained CMOS scaling limits. IBM J Res Dev 46(2.3):235–244Google Scholar
  3. 3.
    Iwai H (2009) Roadmap for 22 nm and beyond (Invited Paper). Microelectron Eng 86(7–9):1520–1528CrossRefGoogle Scholar
  4. 4.
    Theis TN, Solomon PM (2010) In quest of the “next switch” prospects for greatly reduced power dissipation in a successor to the silicon field-effect transistor. Proc IEEE 98(12):2005–2014CrossRefGoogle Scholar
  5. 5.
    Riel H, Wernersson L-E, Hong M et al (2014) III–V compound semiconductor transistors—from planar to nanowire structures. MRS Bull 39(08):668–677CrossRefGoogle Scholar
  6. 6.
    Kim DH, del Alamo JA, Antoniadis DA et al (2009) Extraction of virtual-source injection velocity in sub-100 nm HFETs. IEDM 09:861–864Google Scholar
  7. 7.
    Khakifirooz A, Antoniadis DA (2008) MOSFET performance scaling—Part I: historical trends. IEEE Trans Electron Devices 55(6):1391–1440ADSCrossRefGoogle Scholar
  8. 8.
    Kim D-H, Del Alamo JA (2010) 30-nm InAs PHEMTs with fT = 644 GHz and fmax = 681 GHz. IEEE Electron Device Lett 31(8):806ADSCrossRefGoogle Scholar
  9. 9.
    Kim D-H, Del Alamo JA, Chen P et al (2010) 50-nm E-mode In0.7Ga0.3As PHEMTs on 100-mm InP substrate with fmax > 1 THz IEDM 10:692–695Google Scholar
  10. 10.
    del Alamo JA (2011) Nanometre-scale electronics with III–V compound semiconductors. Nature 479(7373):317–323ADSCrossRefGoogle Scholar
  11. 11.
    Waldron N, KimJ D-H, Del Alamo A (2010) A self-aligned InGaAs HEMT architecture for logic applications. IEEE Trans Electron Devices 57(1):297–304ADSCrossRefGoogle Scholar
  12. 12.
    Kim D-H, Del Alamo JA (2008) 30-nm InAs pseudomorphic HEMTs on an InP substrate with a current-gain cutoff frequency of 628 GHz. IEEE Electron Device Lett 29(8):830–833ADSCrossRefGoogle Scholar
  13. 13.
    Fukui T, Yoshimura M, Nakai E et al (2012) Position-controlled III-V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy. Ambio 41:119–124CrossRefGoogle Scholar
  14. 14.
    Tomioka K, Yoshimura M, Fukui T (2012) A III-V nanowire channel on silicon for high-performance vertical transistors. Nature 488(7410):189–192ADSCrossRefGoogle Scholar
  15. 15.
    Lee C-W, Yun S-R-N, Yu C-G et al (2007) Device design guidelines for nano-scale MuGFETs. Solid-State Electron 51(3):505–510ADSCrossRefGoogle Scholar
  16. 16.
    Auth CP, Plummer JD (1997) Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET’s. IEEE Electron Device Lett 18(2):74–76ADSCrossRefGoogle Scholar
  17. 17.
    Dick KA, Thelander C, Samuelson L et al (2010) Crystal phase engineering in single InAs nanowires. Nano Lett 10(9):3494–3499ADSCrossRefGoogle Scholar
  18. 18.
    Bao J, Bell DC, Capasso F et al (2009) Nanowire-induced Wurtzite InAs thin film on Zinc-Blende InAs substrate. Adv Mater 21(36):3654–3658CrossRefGoogle Scholar
  19. 19.
    Crain J, Piltz RO, Ackland GJ et al (1995) Erratum: tetrahedral structures and phase transitions in III-V semiconductors. Phys Rev B 52(23):16936ADSCrossRefGoogle Scholar
  20. 20.
    Glas F, Harmand JC, Patriarche G (2007) Why does wurtzite form in nanowires of III-V zinc blende semiconductors? Phys Rev Lett 99(14):146101ADSCrossRefGoogle Scholar
  21. 21.
    Koguchi M, Kakibayashi H, Yazawa M et al (1992) Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type. Jpn J Appl Phys 31(7):2061ADSCrossRefGoogle Scholar
  22. 22.
    Pan D, Fu M, Yu X et al (2014) Controlled synthesis of phase-pure InAs nanowires on Si(111) by diminishing the diameter to 10 nm. Nano Lett 14(3):1214–1220ADSCrossRefGoogle Scholar
  23. 23.
    Dubrovskii VG, Sibirev NV (2008) Growth thermodynamics of nanowires and its application to polytypism of zinc blende III-V nanowires. Phys Rev B 77(3)Google Scholar
  24. 24.
    Zhang Z, Lu Z-Y, Chen P-P et al (2013) Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy. Appl Phys Lett 103(7):073109ADSCrossRefGoogle Scholar
  25. 25.
    Sladek K, Winden A, Wirths S et al (2012) Comparison of InAs nanowire conductivity: influence of growth method and structure. Phys Status Solidi (c) 9(2):230–234ADSCrossRefGoogle Scholar
  26. 26.
    Thelander C, Caroff P, Plissard S et al (2011) Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett 11(6):2424–2429Google Scholar
  27. 27.
    Zhang Z, Zheng K, Lu ZY et al (2015) Catalyst Orientation-induced growth of defect-free zinc-blende structured <001> InAs Nanowires. Nano Lett 15(2):876–882Google Scholar
  28. 28.
    Xu H, Wang Y, Guo Y et al (2012) Defect-free <110> zinc-blende structured InAs nanowires catalyzed by palladium. Nano Lett 12(11):5744–5749Google Scholar
  29. 29.
    Hjort M, Lehmann S, Knutsson J et al (2014) Electronic and structural differences between Wurtzite and Zinc Blende InAs nanowire surfaces: experiment and theory. ACS Nano 8(12):12346–12355CrossRefGoogle Scholar
  30. 30.
    Ning F, Tang L-M, Zhang Y et al (2013) First-principles study of quantum confinement and surface effects on the electronic properties of InAs nanowires. J Appl Phys 114(22):224304ADSCrossRefGoogle Scholar
  31. 31.
    Trägårdh J, Persson AI, Wagner JB et al (2007) Measurements of the band gap of wurtzite InAs1−xPx nanowires using photocurrent spectroscopy. J Appl Phys 101(12):123701ADSCrossRefGoogle Scholar
  32. 32.
    De A, Pryor CE (2010) Predicted band structures of III-V semiconductors in the wurtzite phase. Phys Rev B 81(15):155210ADSCrossRefGoogle Scholar
  33. 33.
    Mead C, Spitzer W (1963) Fermi level position at semiconductor surfaces. Phys Rev Lett 10(11):471–472ADSCrossRefGoogle Scholar
  34. 34.
    Noguchi M, Hirakawa K, Ikoma T (1991) Intrinsic electron accumulation layers on reconstructed clean InAs(100) surfaces. Phys Rev Lett 66(17):2243–2246ADSCrossRefGoogle Scholar
  35. 35.
    Olsson LO, Andersson CBM, Hakansson MC et al (1996) Charge accumulation at InAs surfaces. Phys Rev Lett 76(19):3626–3629ADSCrossRefGoogle Scholar
  36. 36.
    Razavieh A, Mohseni PK, Jung K et al (2014) Effect of diameter variation on electrical characteristics of Schottky Barrier Indium Arsenide nanowire field-effect transistors. ACS Nano 8(6):6281–6287CrossRefGoogle Scholar
  37. 37.
    Shi T, Fu M, Pan D et al (2015) Contact properties of field-effect transistors based on indium arsenide nanowires thinner than 16 nm. Nanotechnology 26(17):175202ADSCrossRefGoogle Scholar
  38. 38.
    Wagner RS, Ellis WC (1964) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4(5):89ADSCrossRefGoogle Scholar
  39. 39.
    Björk MT, Ohlsson BJ, Thelander C et al (2002) Nanowire resonant tunneling diodes. Appl Phys Lett 81(23):4458ADSCrossRefGoogle Scholar
  40. 40.
    Tomioka K, Izhizaka F, Fukui T (2015) Selective-area growth of InAs nanowires on Ge and vertical transistor application. Nano Lett 15(11):7253–7257ADSCrossRefGoogle Scholar
  41. 41.
    Dey AW, Thelander C, Lind E et al (2012) High-performance InAs nanowire MOSFETs. IEEE Electron Device Lett 33(6):791–793ADSCrossRefGoogle Scholar
  42. 42.
    Johansson S, Memisevic E, Wernersson L-E et al (2014) High-frequency gate-all-around vertical InAs nanowire MOSFETs on Si substrates. IEEE Electron Dev Lett 35(518–520)Google Scholar
  43. 43.
    Abay S, Persson D, Nilsson H et al (2014) Charge transport in InAs nanowire Josephson junctions. Phys Rev B 89(21)Google Scholar
  44. 44.
    Anindya Das YR, Most Y, Oreg Y et al. (2012) Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nat Phys 8:887–895Google Scholar
  45. 45.
    Abay S, Nilsson H, Wu F et al (2012) High critical-current superconductor-InAs nanowire-superconductor junctions. Nano Lett 12(11):5622–5625ADSCrossRefGoogle Scholar
  46. 46.
    Fan D, Li S, Kang N et al (2015) Formation of long single quantum dots in high quality InSb nanowires grown by molecular beam epitaxy. Nanoscale 7(36):14822–14828ADSCrossRefGoogle Scholar
  47. 47.
    Miao J, Hu W, Guo N et al (2014) Single InAs nanowire room-temperature near-Infrared photodetector. ACS Nano 8(4):3628–3635CrossRefGoogle Scholar
  48. 48.
    Shin HW, Lee SJ, Kim DG et al (2015) Short-wavelength infrared photodetector on Si employing strain-induced growth of very tall InAs nanowire arrays. Sci Rep 5:10764CrossRefGoogle Scholar
  49. 49.
    Liu Z, Luo T, Liang B et al (2013) High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res 6(11):775–783ADSCrossRefGoogle Scholar
  50. 50.
    Wei W, Bao X-Y, Soci C et al (2009) Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection. Nano Lett 9(8):2926–2934ADSCrossRefGoogle Scholar
  51. 51.
    Dey AW, Svensson J, Borg BM et al (2012) Single InAs/GaSb nanowire low-power CMOS inverter. Nano Lett 12(11):5593–5597ADSCrossRefGoogle Scholar
  52. 52.
    Svensson J, Dey AW, Jacobsson D et al (2015) III-V nanowire complementary metal-oxide semiconductor transistors monolithically integrated on Si. Nano Lett 15(12):7898–7904ADSCrossRefGoogle Scholar
  53. 53.
    Gu JJ, Neal AT, Ye PD (2011) Effects of (NH4)2S passivation on the off-state performance of 3-dimensional InGaAs metal-oxide-semiconductor field-effect transistors. Appl Phys Lett 99(15):152113ADSCrossRefGoogle Scholar
  54. 54.
    Radosavljevic M, Chu-Kung B, Corcoran S et al (2009) Advanced high-K gate dielectric for high-performance short-channel In0.7Ga0.3As quantum well field effect transistors on silicon substrate for low power logic applications. IEDM 9:319Google Scholar
  55. 55.
    Bryllert T, Wernersson L-E, Löwgren T et al (2006) Vertical wrap-gated nanowire transistors. Nanotechnology 17(11):S227–S230ADSCrossRefGoogle Scholar
  56. 56.
    Rehnstedt C, Martensson T, Thelander C et al (2008) Vertical InAs nanowire wrap gate transistors on Si substrates. IEEE Trans Electron Devices 55(11):3037–3041ADSCrossRefGoogle Scholar
  57. 57.
    Thelander C, FrobergFroberg LE, Rehnstedt C et al (2008) Vertical enhancement-mode InAs nanowire field-effect transistor with 50-nm wrap gate. IEEE Electron Device Lett 29(3):206–208ADSCrossRefGoogle Scholar
  58. 58.
    Egard M, Johansson S, Johansson AC et al (2010) Vertical InAs nanowire wrap gate transistors with ft > 7 GHz and fmax > 20 GHz. Nano Lett 10(3):809–812ADSCrossRefGoogle Scholar
  59. 59.
    Berg M, Persson KM, Wu J et al (2014) InAs nanowire MOSFETs in three-transistor configurations: single balanced RF down-conversion mixers. Nanotechnology 25(48):485203CrossRefGoogle Scholar
  60. 60.
    Persson K-M, Berg M, Borg MB et al (2013) Extrinsic and intrinsic performance of vertical InAs nanowire MOSFETs on Si substrates. IEEE Trans Electron Devices 60(9):2761–2767ADSCrossRefGoogle Scholar
  61. 61.
    Tomioka K, Fukui T (2011) Tunnel field-effect transistor using InAs nanowire/Si heterojunction. Appl Phys Lett 98(8):083114ADSCrossRefGoogle Scholar
  62. 62.
    Tanaka T, Tomioka K, Hara S et al (2010) Vertical surrounding gate transistors using single InAs nanowires grown on Si substrates. Appl Phys Express 3(2):5003CrossRefGoogle Scholar
  63. 63.
    Nam S, Jiang X, Xiong Q et al (2009) Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. Proc Natl Acad Sci 106(50):21035–21038ADSCrossRefGoogle Scholar
  64. 64.
    Dick KA, Deppert K, Samuelson L et al (2006) Optimization of Au-assisted InAs nanowires grown by MOVPE. J Cryst Growth 297(2):326–333ADSCrossRefGoogle Scholar
  65. 65.
    Ghalamestani SG, Johansson S, Borg BM et al (2012) Uniform and position-controlled InAs nanowires on 2″ Si substrates for transistor applications. Nanotechnology 23(1):015302ADSCrossRefGoogle Scholar
  66. 66.
    Tomioka K, Mohan P, Noborisaka J et al (2007) Growth of highly uniform InAs nanowire arrays by selective-area MOVPE. J Cryst Growth 298:644–647ADSCrossRefGoogle Scholar
  67. 67.
    Dimakis E, Lähnemann J, Jahn U et al (2011) Self-assisted nucleation and vapor-solid growth of InAs nanowires on bare Si(111). Cryst Growth Des 11(9):4001–4008CrossRefGoogle Scholar
  68. 68.
    Persson KM, Sjöland H, Lind E et al (2014) InAs nanowire MOSFET differential active mixer on Si-substrate. Electron Lett 50(9):682–683CrossRefGoogle Scholar
  69. 69.
    Ford AC, Chuang S, Ho JC et al (2010) Patterned p-doping of InAs nanowires by gas-phase surface diffusion of Zn. Nano Lett 10(2):509–513ADSCrossRefGoogle Scholar
  70. 70.
    Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373):329–337ADSCrossRefGoogle Scholar
  71. 71.
    De Michielis L, Lattanzio L, Moselund K et al (2013) Tunneling and occupancy probabilities: how do they affect tunnel-FET behavior? IEEE Electron Device Lett 34(6):726–728ADSCrossRefGoogle Scholar
  72. 72.
    Borg M, Schmid H, Moselund KE et al (2014) Vertical III-V nanowire device integration on Si(100). Nano Lett 14(4):1914–1920ADSCrossRefGoogle Scholar
  73. 73.
    Dey AW, Svensson J, Ek M et al (2013) Combining axial and radial nanowire heterostructures: radial esaki diodes and tunnel field-effect transistors. Nano Lett 13(12):5919–5924ADSCrossRefGoogle Scholar
  74. 74.
    Dey AW, Borg BM, Ganjipour B et al (2013) High-current GaSb/InAs (Sb) nanowire tunnel field-effect transistors. IEEE Electron Device Lett 34(2):211–213ADSCrossRefGoogle Scholar
  75. 75.
    Dayeh SA, Aplin DP, Zhou X et al (2007) High electron mobility InAs nanowire field-effect transistors. Small 3(2):326–332CrossRefGoogle Scholar
  76. 76.
    Zhao Y, Candebat D, Delker C et al (2012) Understanding the impact of Schottky barriers on the performance of narrow bandgap nanowire field effect transistors. Nano Lett 12(10):5331–5336ADSCrossRefGoogle Scholar
  77. 77.
    Appenzeller J, Radosavljević M, Knoch J et al (2004) Tunneling versus thermionic emission in one-dimensional semiconductors. Phys Rev Lett 92(4)Google Scholar
  78. 78.
    Oktyabrsky S, Ye PD (2010) Fundamentals of III-V semiconductor MOSFETs. Springer, New YorkCrossRefGoogle Scholar
  79. 79.
    Sze SM, Ng KK (2007) Physics of semiconductor devices. Wiley, HobokenGoogle Scholar
  80. 80.
    Takei K, Fang H, Kumar SB et al (2011) Quantum confinement effects in nanoscale-thickness InAs membranes. Nano Lett 11(11):5008–5012ADSCrossRefGoogle Scholar
  81. 81.
    George SM (2010) Atomic layer deposition: an overview. Chemical Review 110:111–131CrossRefGoogle Scholar
  82. 82.
    Saint-Cast P, Kania D, Hofmann M et al (2009) Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide. Appl Phys Lett 95(15):151502ADSCrossRefGoogle Scholar
  83. 83.
    Wang Z, Xu H, Zhang Z et al (2010) Growth and performance of yttrium oxide as an ideal high-kappa gate dielectric for carbon-based electronics. Nano Lett 10(6):2024–2030ADSCrossRefGoogle Scholar
  84. 84.
    Wallace RM, McIntyre PC, Kim J et al (2009) Atomic layer deposition of dielectrics on Ge and III–V materials for ultrahigh performance transistors. MRS Bull 34(07):493–503CrossRefGoogle Scholar
  85. 85.
    Takei K, Kapadia R, Fang H et al (2013) High quality interfaces of InAs-on-insulator field-effect transistors with ZrO2 gate dielectrics. Appl Phys Lett 102(15):153513ADSCrossRefGoogle Scholar
  86. 86.
    Wheeler D, Seabaugh A, Froberg L et al. (2007) Electrical properties of HfO2/InAs MOS capacitors. In: Semiconductor device research symposium, pp 1–2Google Scholar
  87. 87.
    Mahata C, Byun YC, An CH et al. (2013) Comparative study of atomic-layer-deposited stacked (HfO2/Al2O3) and nanolaminated (HfAlOx) dielectrics on In0.53Ga0.47As. ACS Appl Mater & Interfaces 5(10):4195–4201Google Scholar
  88. 88.
    Ko H, Takei K, Kapadia R et al (2010) Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature 468(7321):286–289ADSCrossRefGoogle Scholar
  89. 89.
    Tomioka K, Yoshimura M, Fukui T (2013) Sub 60 mV/decade switch using an InAs nanowire-Si heterojunction and turn-on voltage shift with a pulsed doping technique. Nano Lett 13(12):5822–5826ADSCrossRefGoogle Scholar
  90. 90.
    Hilner E, Hakanson U, Froberg LE et al (2008) Direct atomic scale imaging of III-V nanowire surfaces. Nano Lett 8(11):3978–3982ADSCrossRefGoogle Scholar
  91. 91.
    Ford AC, Ho JC, Chueh Y-L et al (2008) Diameter-dependent electron mobility of InAs nanowires. Nano Lett 9(1):360–365ADSCrossRefGoogle Scholar
  92. 92.
    Takahashi T, Takei K, Adabi E et al (2010) Parallel array InAs nanowire transistors for mechanically bendable, ultrahigh frequency electronics. ACS Nano 4(10):5855–5860CrossRefGoogle Scholar
  93. 93.
    Esseni D, Pala MG (2013) Interface traps in InAs nanowire tunnel FETs and MOSFETs—Part II: comparative analysis and trap-induced variability. IEEE Trans Electron Devices 60(9):2802–2807ADSCrossRefGoogle Scholar
  94. 94.
    Hertenberger S, Rudolph D, Bichler M et al (2010) Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy. J Appl Phys 108(11):114316ADSCrossRefGoogle Scholar
  95. 95.
    Dey AW (2013) Low-power nanowire circuits and transistors. Doctoral thesis, Lund UniversityGoogle Scholar
  96. 96.
    Léonard F, Talin A (2006) Size-dependent effects on electrical contacts to nanotubes and nanowires. Phys Rev Lett 97(2):026804ADSCrossRefGoogle Scholar
  97. 97.
    Lind E, Persson MP, Niquet Y-M et al (2009) Band structure effects on the scaling properties of [111] InAs nanowire MOSFETs. IEEE Trans Electron Devices 56(2):201–205ADSCrossRefGoogle Scholar
  98. 98.
    Chuang S, Gao Q, Kapadia R et al (2013) Ballistic InAs nanowire transistors. Nano Lett 13(2):555–558ADSCrossRefGoogle Scholar
  99. 99.
    Dayeh SA, Susac D, Kavanagh KL et al (2009) Structural and room-temperature transport properties of Zinc Blende and Wurtzite InAs nanowires. Adv Func Mater 19(13):2102–2108CrossRefGoogle Scholar
  100. 100.
    Ullah AR, Joyce HJ, Burke AM et al (2013) Electronic comparison of InAs wurtzite and zincblende phases using nanowire transistors. Phys Status Solidi—Rapid Res Lett 7(10):911–914Google Scholar
  101. 101.
    Shimoida K, Yamada Y, Tsuchiya H et al (2013) Orientational dependence in device performances of InAs and Si nanowire MOSFETs under ballistic transport. IEEE Trans Electron Devices 60(1):117–122ADSCrossRefGoogle Scholar
  102. 102.
    Alam K, Sajjad RN (2010) Electronic properties and orientation-dependent performance of InAs nanowire transistors. IEEE Trans Electron Devices 57(11):2880–2885ADSCrossRefGoogle Scholar
  103. 103.
    Boxberg F, Sondergaard N, Xu HQ (2012) Elastic and piezoelectric properties of zincblende and wurtzite crystalline nanowire heterostructures. Adv Mater 24(34):4692–4706CrossRefGoogle Scholar
  104. 104.
    Li X, Wei X, Xu T et al (2015) Remarkable and crystal-structure-dependent piezoelectric and piezoresistive effects of InAs nanowires. Adv Mater 27(18):2852–2858CrossRefGoogle Scholar
  105. 105.
    Zheng K, Zhang Z, Hu Y et al (2016) Orientation dependence of electromechanical characteristics of defect-free InAs nanowires. Nano Lett 16(3):1787–1793ADSCrossRefGoogle Scholar
  106. 106.
    Zhang X, Zou J, Paladugu M et al (2009) Evolution of epitaxial InAs nanowires on GaAs (111) B. Small 5(3):366–369CrossRefGoogle Scholar
  107. 107.
    Joyce HJ, Gao Q, Tan HH et al (2007) Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. Nano Lett 7(4):921–926ADSCrossRefGoogle Scholar
  108. 108.
    Woo RL, Xiao R, Kobayashi Y et al (2008) Effect of twinning on the photoluminescence and photoelectrochemical properties of indium phosphide nanowires grown on silicon (111). Nano Lett 8(12):4664–4669ADSCrossRefGoogle Scholar
  109. 109.
    Schroer MD, Petta JR (2010) Correlating the nanostructure and electronic properties of InAs nanowires. Nano Lett 10(5):1618–1622ADSCrossRefGoogle Scholar
  110. 110.
    Jiang X, Xiong Q, Nam S et al (2007) InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett 7(10):3214–3218ADSCrossRefGoogle Scholar
  111. 111.
    Caroff P, Wagner JB, Dick KA et al (2008) High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. Small 4(7):878–882CrossRefGoogle Scholar
  112. 112.
    Ullah AR, Joyce HJ, Burke AM et al (2013) Electronic comparison of InAs wurtzite and zincblende phases using nanowire transistors. Phys Status Solidi – Rapid Res Lett 7(10):911–914Google Scholar
  113. 113.
    Takei K, Chuang S, Fang H et al (2011) Benchmarking the performance of ultrathin body InAs-on-insulator transistors as a function of body thickness. Appl Phys Lett 99(10):103507ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of KonstanzKonstanzGermany

Personalised recommendations