Advertisement

Advances in Colposcopy

  • Bindiya Gupta
Chapter

Abstract

Various new technologies have been introduced to improve the diagnostic accuracy of colposcopy, objectively guide to the site of biopsy, and measure the dysplastic nature of the epithelium. These include fluorescence spectroscopy, electrical impedance spectroscopy, diffuse reflectance spectroscopy, and/or their combinations. Other technologies like optical coherence tomography and polarimetric imaging have also been used to define the lesions better. Not only the adjunct use of technology but portable user-friendly devices have been developed which have increased the provision of colposcopy in remote areas.

References

  1. 1.
    Nazeer S, Shafi MI. Objective perspective in colposcopy. Best Pract Res Clin Obstet Gynaecol. 2011;25(5):631–40.CrossRefGoogle Scholar
  2. 2.
    Mitchell MF, Schottenfeld D, Tortolero-Luna G, et al. Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis. Obstet Gynecol. 1998;91:626–31.PubMedGoogle Scholar
  3. 3.
    Hopman EH, Voorhorst FJ, Kenemans P, et al. Observer agreement on interpreting colposcopic images of CIN. Gynecol Oncol. 1995;58:206–9.CrossRefGoogle Scholar
  4. 4.
    ALTS group. Results of a randomized trial on the management of cytology interpretations of atypical squamous cells of undetermined significance. Am J Obstet Gynecol. 2003;188:1383–92.CrossRefGoogle Scholar
  5. 5.
    Underwood M, et al. Accuracy of colposcopy-directed punch biopsies: a systematic review and meta-analysis. BJOG. 2012;119:1293–301.CrossRefGoogle Scholar
  6. 6.
    Balas C. A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix. IEEE Trans Biomed Eng. 2001;548:96–104.CrossRefGoogle Scholar
  7. 7.
    Balas C, Papoutsogglou G, Potirakis A. In vivo molecular imaging of cervical neoplasia using acetic acid as biomarker. IEEE J Sel Top Quantum Electron. 2008;14:29–42.CrossRefGoogle Scholar
  8. 8.
    Louwers JA, Zaal A, Kocken M, et al. Women’s preferences of dynamic spectral imaging colposcopy. Gynecol Obstet Invest. 2015;79:239–43.CrossRefGoogle Scholar
  9. 9.
    Soutter WP, Diakomanolis E, Lyons D, et al. Dynamic spectral imaging: improving colposcopy. Clin Cancer Res. 2009;15:1814–20.CrossRefGoogle Scholar
  10. 10.
    Louwers JA, Zaal A, Kochen M, et al. Dynamic spectral imaging colposcopy: higher sensitivity for detection of premalignant cervical lesions. BJOG. 2011;118:309–18.CrossRefGoogle Scholar
  11. 11.
    Roensbo MT. Can dynamic spectral imaging system colposcopy replace conventional colposcopy in the detection of high-grade cervical lesions? Acta Obstet Gynecol Scand. 2015;94(7):781–5.CrossRefGoogle Scholar
  12. 12.
    Coronado PJ, Fasero M. Correlating the accuracy of colposcopy with practitioner experience when diagnosing cervical pathology using the dynamic spectral imaging system. Gynecol Obstet Invest. 2014;78(4):224–9.CrossRefGoogle Scholar
  13. 13.
    Zaal A, Louwers J, Berkhof J, et al. Agreement between colposcopic impression and histological diagnosis among human papillomavirus type 16-positive women: a clinical trial using dynamic spectral imaging colposcopy. BJOG. 2012;119:537–44.CrossRefGoogle Scholar
  14. 14.
    Wade R, Spackman E, Corbett M, Walker S, Light K, Naik R, et al. Adjunctive colposcopy technologies for examination of the uterine cervix--DySIS, LuViva Advanced Cervical Scan and Niris Imaging System: a systematic review and economic evaluation. Health Technol Assess. 2013;17(8):1–240, v–vi.CrossRefGoogle Scholar
  15. 15.
    Leeson S. Advances in colposcopy: new technologies to challenge current practice. Eur J Obstet Gynecol Reprod Biol. 2014;182:140–5.CrossRefGoogle Scholar
  16. 16.
    Ferris DG, Lawhead RA, Dickman ED, et al. Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia. J Low Genit Tract Dis. 2001;5:65–72.PubMedGoogle Scholar
  17. 17.
    DeSantis T, Chakhtoura N, Twiggs L, et al. Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial. J Low Genit Tract Dis. 2007;11:18–24.CrossRefGoogle Scholar
  18. 18.
    Twiggs LB, Chakhtoura NA, Ferris DG, et al. Multimodal hyperspectroscopy as a triage test for cervical neoplasia: pivotal clinical trial results. Gynecol Oncol. 2013;130:147–51.CrossRefGoogle Scholar
  19. 19.
    Flowers LC, Ault KA, Twiggs LB, et al. Preliminary assessment of cervical spectroscopy for primary screening of moderate and high grade cervical Dysplasia. In: ASCCP conference; 2012. Available at: http://www.guidedinc.com/Pub%20data/ASCCP%202012%20Poster.pdf. Accessed 03 Feb 2018.
  20. 20.
    Tan JH, Wrede CD. New technologies and advances in colposcopic assessment. Best Pract Res Clin Obstet Gynaecol. 2011;25(5):667–77.CrossRefGoogle Scholar
  21. 21.
    Imaging system helps detect precancerous cervical abnormalities. FDA Consum. 2006;40:4.Google Scholar
  22. 22.
    Alvarez RD, Wright TC. Effective cervical neoplasia detection with a novel optical detection system: a randomized trial. Gynecol Oncol. 2007;104:281–9.CrossRefGoogle Scholar
  23. 23.
    Georgakoudi I, Sheets EE, Muller MG, et al. Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo. Am J Obstet Gynecol. 2002;186:374–82.CrossRefGoogle Scholar
  24. 24.
    Tidy JA, Brown BH, Healey TJ, et al. Accuracy of detection of high-grade cervical intraepithelial neoplasia using electrical impedance spectroscopy with colposcopy. BJOG. 2013;120:400–9.CrossRefGoogle Scholar
  25. 25.
    Abdul S, Brown BH, Milnes P, Tidy JA. The use of electrical impedance spectroscopy in the detection of cervical intraepithelial neoplasia. Int J Gynecol Cancer. 2006;16(5):1823–32.CrossRefGoogle Scholar
  26. 26.
    Balasubramani L, Brown BH, Healey J, et al. The detection of cervical intraepithelial neoplasia by electrical impedance spectroscopy: the effects of acetic acid and tissue homogeneity. Gynecol Oncol. 2009;115(2):267–71.CrossRefGoogle Scholar
  27. 27.
    Brown BH, Milnes P, Abdul S, Tidy JA. Detection of cervical intraepithelial neoplasia using impedance spectroscopy: a prospective study. BJOG. 2005;112(6):802–6.CrossRefGoogle Scholar
  28. 28.
    Barrow AJ. Wu SM. Impedance measurements for cervical cancer diagnosis. Gynecol Oncol. 2007;107(Suppl. 1):S40–3.CrossRefGoogle Scholar
  29. 29.
    Singer A, Coppleson M, Canfell K, et al. A real time optoelectronic device as an adjunct to the Pap smear for cervical screening: a multicentre evaluation. Int J Gynecol Cancer. 2003;13:804–11.CrossRefGoogle Scholar
  30. 30.
    Escobar PF, Rojas-Espaillat L, Tisci S, et al. Optical coherence tomography as a diagnostic aid to visual inspection and colposcopy for preinvasive and invasive cancer of the uterine cervix. Int J Gynecol Cancer. 2006;16:1815–22.CrossRefGoogle Scholar
  31. 31.
    Liu Z, Belinson SE, Li J, et al. Diagnostic efficacy of real-time optical coherence tomography in the management of preinvasive and invasive neoplasia of the uterine cervix. Int J Gynecol Cancer. 2010;20:283–7.CrossRefGoogle Scholar
  32. 32.
    Park SY, Follen M, Milbourne A, et al. Automated image analysis of digital colposcopy for the detection of cervical neoplasia. J Biomed Opt. 2008;13:014029.CrossRefGoogle Scholar
  33. 33.
    Vizet J, Rehbinder J, Deby S, Roussel S, Nazac A, Soufan R, et al. In vivo imaging of uterine cervix with a Mueller polarimetric colposcope. Sci Rep. 2017;7(1):2471.CrossRefGoogle Scholar
  34. 34.
    Novikova T, Pierangelo A, Manhas S, Benali A, Validire P, Gayet B, et al. The origins of polarimetric image contrast between healthy and cancerous human colon tissue. Appl Phys Lett. 2013;102:241103.CrossRefGoogle Scholar
  35. 35.
    Rehbinder J, Haddad H, Deby S, Teig B, Nazac A, Novikova T, et al. Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation. J Biomed Opt. 2016;21(7):71113.CrossRefGoogle Scholar
  36. 36.
    Inoue H, Kudo S, Shiokawa A. Technology insight: laser scanning confocal microscopy and endocytoscopy for cellular observation of the gastrointestinal tract. Nat Clin Pract Gastroenterol Hepatol. 2005;2:31–6.CrossRefGoogle Scholar
  37. 37.
    Tan J, Quinn MA, Pyman JM. Detection of cervical intraepithelial neoplasia in vivo using confocal endomicroscopy. BJOG. 2009;116:1663–70.CrossRefGoogle Scholar
  38. 38.
    Parashari A, Singh V, Sehgal A, Mehrotra R. BMJ Innov. 2015;1:99–102.CrossRefGoogle Scholar
  39. 39.
    Parashari A, Singh V, Sehgal A, et al. Low-cost technology for screening uterine cervical cancer. Bull World Health Organ. 2000;78:964–7.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Singh V, Parashari A, Gupta S, et al. Performance of a low cost magnifying device, Magnivisualizer, versus colposcope for detection of pre-cancer and cancerous lesions of uterine cervix. J Gynecol Oncol. 2014;25:282–6.CrossRefGoogle Scholar
  41. 41.
    Aggarwal P, Batra S, Gandhi G, et al. Can visual inspection with acetic acid under magnification substitute colposcopy in detecting cervical intraepithelial neoplasia in low-resource settings? Arch Gynecol Obstet. 2011;284:397–403.CrossRefGoogle Scholar
  42. 42.
    Nessa A, Roy JS, Chowdhury MA, Khanam Q, Afroz R, Wistrand C, et al. Evaluation of the accuracy in detecting cervical lesions by nurses versus doctors using a stationary colposcope and Gynocular in a low-resource setting. BMJ Open. 2014;4(11):e005313.CrossRefGoogle Scholar
  43. 43.
    Nessa A, Wistrand C, Begum SA, Thuresson M, Shemer I, Thorsell M, Shemer EA. Evaluation of stationary colposcope and the Gynocular, by the swede score systematic colposcopic system in VIA positive women: a crossover randomized trial. Int J Gynecol Cancer. 2014;24(2):339–45.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Bindiya Gupta
    • 1
  1. 1.Department of Obstetrics and GynaecologyUCMS & GTB HospitalNew DelhiIndia

Personalised recommendations