Advertisement

Emerging and Ecofriendly Technologies for the Removal of Organic and Inorganic Pollutants from Industrial Wastewaters

  • Gaurav Saxena
  • Surya Pratap Goutam
  • Akash Mishra
  • Sikandar I. Mulla
  • Ram Naresh Bharagava
Chapter

Abstract

Environmental pollution is one of the major problems of the current world, and providing a sustainable solution to manage pollution is a key challenge. Industries are mainly responsible for the environmental pollution as they discharge highly toxic pollutants in the receiving environment and provide chance for exposure to mankind and, thus, may create toxicity in humans and animals. The physicochemical methods used for the removal of a variety of organic and inorganic pollutants from industrial wastewater are costly and environmentally destructive and may create secondary pollution and, thus, ultimately deter the environmental quality. To overcome these problems, various emerging and ecofriendly technologies are becoming popular for the removal of various pollutants from industrial wastewaters. Therefore, this chapter provides an overview of the various emerging and ecofriendly technologies for the removal of organic and inorganic pollutants from industrial wastewaters with their merits and demerits.

Keywords

Industrial wastewaters Organic pollutants Inorganic pollutants Emerging and ecofriendly technologies Waste treatment and management 

Notes

Acknowledgment

The financial support provided by the University Grant Commission (UGC) to Mr. Gaurav Saxena is duly acknowledged. The corresponding author (Dr. Ram Naresh Bharagava) is also highly thankful to the “Science and Engineering Research Board” (SERB), Department of Science & Technology (DST), Government of India (GOI), New Delhi, India, for providing the financial support as “Major Research Project” (Grant No.: EEQ/2017/000407), which is also duly acknowledged.

References

  1. Adelaja O, Keshavarz T, Kyazze G (2015) The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells. J Hazard Mater 283:211–217.  https://doi.org/10.1016/j.jhazmat.2014.08.066CrossRefGoogle Scholar
  2. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881CrossRefGoogle Scholar
  3. Antizar-Ladislao B (2010) Bioremediation: working with bacteria. Elements 6:389–394CrossRefGoogle Scholar
  4. Arora PK, Srivastava A, Singh VP (2014) Bacterial degradation of nitrophenols and their derivatives. J Hazard Mater 266:42–59CrossRefGoogle Scholar
  5. Arora PK, Srivastava A, Garg SK, Singh VP (2018) Recent advances in degradation of chloronitrophenols. Bioresour Technol 250C:902–909CrossRefGoogle Scholar
  6. Bharagava RN, Saxena G, Mulla SI, Patel DK (2017a) Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Arch Environ Contam Toxicol.  https://doi.org/10.1007/s00244-017-0490-xCrossRefGoogle Scholar
  7. Bharagava RN, Chowdhary P, Saxena G (2017b) Bioremediation: an ecosustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 1–22.  https://doi.org/10.1201/9781315173351-2CrossRefGoogle Scholar
  8. Bharagava RN, Saxena G, Chowdhary P (2017c) Constructed wetlands: an emerging phytotechnology for degradation and detoxification of industrial wastewaters. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 397–426.  https://doi.org/10.1201/9781315173351-15CrossRefGoogle Scholar
  9. Bharagava RN, Mani S, Mullab SI, Saratale GD (2018) Degradation and decolourization potential of an ligninolytic enzyme producing Aeromonas hydrophila for crystal violet dye and its phytotoxicity evaluation. Ecotoxicol Environ Saf 156:166–175CrossRefGoogle Scholar
  10. Bharagava RN, Purchase D, Saxena G, Mulla SI (2019) Applications of Metagenomics in microbial bioremediation of pollutants. In: Microbial diversity in the genomic era, pp 459–477. https://doi.org/10.1016/b978-0-12-814849-5.00026-5CrossRefGoogle Scholar
  11. Bokare V, Murugesan K, Kim JH, Kim EJ, Chang YS (2012) Integrated hybrid treatment for the remediation of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Sci Total Environ 435–436:563–566CrossRefGoogle Scholar
  12. Calheiros CSC, Rangel AOSS, Castro PML (2007) Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Res 41(8):1790–1798CrossRefGoogle Scholar
  13. Calheiros CSC, Quiterio PVB, Silva G, Crispim LFC, Brix H, Moura SC, Castro PML (2012) Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater. J Environ Manag 95(1):66–71CrossRefGoogle Scholar
  14. Carvalho PN, Arias CA, Brix H (2017) Constructed wetlands for water treatment: new developments. Water 9:397CrossRefGoogle Scholar
  15. Cecchin I, Krishna R, Thom A, Tessaro EF, Schnaid F (2017) Nanobioremediation: integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int Biodeter Biodegr 119:419–428CrossRefGoogle Scholar
  16. Chandra R, Bharagava RN, Rai V (2008) Melanoidins as major colourant in sugarcane molasses based distillery effluent and its degradation. Bioresour Technol 99:4648–4660CrossRefGoogle Scholar
  17. Chandra R, Bharagava RN, Kapley A, Purohit HJ (2011) Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant (CETP) during the degradation and detoxification of tannery wastewater. Bioresour Technol 102(3):2333–2341CrossRefGoogle Scholar
  18. Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste. CRC Press, Boca Raton, pp 1–30CrossRefGoogle Scholar
  19. Chirakkara RA, Cameselle C, Reddy KR (2016) Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Rev Environ Sci Biotechnol.  https://doi.org/10.1007/s11157-016-9391-0CrossRefGoogle Scholar
  20. Daghio M, Vaiopoulou E, Patil SA, Suárez-Suárez A, Head IM, Franzetti A, Rabaey K (2016) Anodes stimulate anaerobic toluene degradation via sulfur cycling in marine sediments. Appl Environ Microbiol 82:297–307.  https://doi.org/10.1128/AEM.02250-15CrossRefGoogle Scholar
  21. El-Bestawy E, Al-Fassi F, Amer R, Aburokba R (2013) Biological treatment of leather-tanning industrial wastewater using free living bacteria. Adv Life Sci Technol 12:46–65Google Scholar
  22. Fang Z, Song H-F, Cang N, Li X-N (2013) Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresour Technol 144:165–171CrossRefGoogle Scholar
  23. Friman H, Schechter A, Nitzan Y, Cahan R (2013) Phenol degradation in bio-electrochemical cells. Int Biodeterior Biodegrad 84:155–160.  https://doi.org/10.1016/j.ibiod.2012.04.019CrossRefGoogle Scholar
  24. Gautam S, Kaithwas G, Bharagava RN, Saxena G (2017) Pollutants in tannery wastewater, pharmacological effects and bioremediation approaches for human health protection and environmental safety. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 369–396.  https://doi.org/10.1201/9781315173351-14CrossRefGoogle Scholar
  25. Ge Z, Wu L, Zhang F, He Z (2015) Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater. J Power Sources 297:260–264CrossRefGoogle Scholar
  26. Gill RT, Harbottle MJ, Smith JWN, Thornton SF (2014) Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications. Chemosphere 107:31–42CrossRefGoogle Scholar
  27. Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396CrossRefGoogle Scholar
  28. Gregorio SD, Giorgetti L, Castiglione MR, Mariotti L, Lorenzi R (2015) Phytoremediation for improving the quality of effluents from a conventional tannery wastewater treatment plant. Int J Environ Sci Technol 12(4):1387–1400CrossRefGoogle Scholar
  29. Gude VG (2016) Wastewater treatment in microbial fuel cells e an overview. J Clean Prod 122:287–307CrossRefGoogle Scholar
  30. Gupta R, Rani R, Chandra A, Kumar V (2018) Potential applications of Pseudomonas sp. (strain CPSB21) to ameliorate Cr6+ stress and phytoremediation of tannery effluent contaminated agricultural soils. Sci Rep 8:4860.  https://doi.org/10.1038/s41598-018-23322-5CrossRefGoogle Scholar
  31. Huang D-Y, Zhou S-G, Chen Q, Zhao B, Yuan Y, Zhuang L (2011) Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell. Chem Eng J 172:647–653.  https://doi.org/10.1016/j.cej.2011.06.024CrossRefGoogle Scholar
  32. Kassaye G, Gabbiye N, Alemu A (2017) Phytoremediation of chromium from tannery wastewater using local plant species. Water Pract Technol 12(4):894–901CrossRefGoogle Scholar
  33. Khan S, Ahmad I, Shah MT, Rehman S, Khaliq A (2009) Use of constructed wetland for the removal of heavy metals from industrial wastewater. J Environ Manag 90:3451–3457CrossRefGoogle Scholar
  34. Khan A, Sharif M, Ali A, Shah SNM, Mian IA, Wahid F, Jan B, Adnan M, Nawaz S, Ali N (2014) Potential of AM fungi in phytoremediation of heavy metals and effect on yield of wheat crop. Am J Plant Sci 5:1578–1586CrossRefGoogle Scholar
  35. Kim IS, Ekpeghere KI, Ha SY, Kim BS, Song B, Kim JT, Kim HG, Koh SC (2014) Full scale biological treatment of tannery wastewater using the novel microbial consortium BM-S-1. J Environ Sci Health A Tox Hazard Subst Environ Eng 49(3):355–364CrossRefGoogle Scholar
  36. Kishor R, Bharagava RN, Saxena G (2018) Industrial wastewaters: the major sources of dye contamination in the environment, Ecotoxicological effects, and bioremediation approaches. In: Bharagava RN (ed) Advances in environmental management, Ist edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–25Google Scholar
  37. Le TT, Nguyen KH, Jeon JR, Francis AJ, Chang YS (2015) Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. J Hazard Mater 287:335–341CrossRefGoogle Scholar
  38. Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18:431–439CrossRefGoogle Scholar
  39. Leitão P, Rossetti S, Nouws HPA, Danko AS, Majone M, Aulenta F (2015) Bioelectrochemically-assisted reductive dechlorination of 1,2-dichloroethane by a Dehalococcoides-enriched microbial culture. Bioresour Technol 195:78–82.  https://doi.org/10.1016/j.biortech.2015.06.027CrossRefGoogle Scholar
  40. Li T, Guo S, Wu B, Li F, Niu Z (2010) Effect of electric intensity on the microbial degradation of petroleum pollutants in soil. J Environ Sci 22:1381–1386CrossRefGoogle Scholar
  41. Li Y, Wu Y, Puranik S, Lei Y, Vadas T, Li B (2014) Metals as electron acceptors in single-chamber microbial fuel cells. J Power Sources 269:430–439CrossRefGoogle Scholar
  42. Lin C-W, Wu C-H, Chiu Y-H, Tsai S-L (2014) Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell. Fuel 125:30–35.  https://doi.org/10.1016/j.fuel.2014.02.018CrossRefGoogle Scholar
  43. Lintern M, Anand R, Ryan C (2013) Natural gold particles in Eucalyptus leaves and their relevance to exploration for buried gold deposits. Nat Commun. www.nature.com/ncomms/2013/131022/ncomms3614.ht
  44. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258CrossRefGoogle Scholar
  45. Ma Y, Oliviera RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in 1206 multi-metal contaminated soil. J Environ Manag 156:62–69CrossRefGoogle Scholar
  46. Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 26:111–121CrossRefGoogle Scholar
  47. Mant C, Costa S, Williams J, Tambourgi E (2004) Phytoremediation of chromium by model constructed wetland. https://doi.org/10.1016/j.biortech.2005.09.01
  48. Mao X, Han FX, Shao X, Guo K, McComb J, Arslan Z, Zhang Z (2016) Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil. Ecotoxicol Environ Saf 125:16–24CrossRefGoogle Scholar
  49. Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39(8):622–654CrossRefGoogle Scholar
  50. Martınez-Prado MA, Unzueta-Medina J, Perez Lopez ME (2014) Electrobioremediation as a hybrid technology to treat soil contaminated with total petroleum hydrocarbons. Rev Mex Ing Quím 13(1):113–127Google Scholar
  51. Maszenan AM, Liu Y, Ng WJ (2011) Bioremediation of wastewaters with recalcitrant organic compounds and metals by aerobic granules. Biotechnol Adv 29:111–123CrossRefGoogle Scholar
  52. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375CrossRefGoogle Scholar
  53. Mendez-Paz D, Omil F, Lema JM (2005) Anaerobic treatment of azo dye Acid Orange 7 under fed-batch and continuous. Water Res 39:771–778CrossRefGoogle Scholar
  54. Noorjahan CM (2014) Physicochemical characteristics, identification of bacteria and biodegradation of industrial effluent. J Bioremed Biodegr 5:229Google Scholar
  55. Oon YL, Ong SA, Ho LN, Wong YS, Oon YS, Lehl HK, Thung WE (2015) Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation. Bioresour Technol 186:270–275CrossRefGoogle Scholar
  56. Paisio CE, Talano MA, González PS, Busto VD, Talou JR, Agostini E (2012) Isolation and characterization of a Rhodococcus strain with phenol-degrading ability and its potential use for tannery effluent biotreatment. Environ Sci Pollut Res Int 19(8):3430–3439CrossRefGoogle Scholar
  57. Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad 59:73–84CrossRefGoogle Scholar
  58. Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574CrossRefGoogle Scholar
  59. Reshma SV, Spandana S, Sowmya M (2011) Bioremediation technologies. World Congress of Biotechnology, IndiaGoogle Scholar
  60. Saichek RE, Reddy KR (2005) Electrokinetically enhanced remediation of hydrophobic organic compounds in soil: a review. Crit Rev Environ Sci Technol 35:115–192CrossRefGoogle Scholar
  61. Sarwar N, Imran M, Shaheen MR, Ishaq W, Kamran A, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721CrossRefGoogle Scholar
  62. Saxena G, Bharagava RN (2015) Persistent organic pollutants and bacterial communities present during the treatment of tannery wastewater. In: Chandra R (ed) Environmental waste management, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 217–247.  https://doi.org/10.1201/b19243-10CrossRefGoogle Scholar
  63. Saxena G, Bharagava RN (2016) Ram Chandra: advances in biodegradation and bioremediation of industrial waste. Clean Techn Environ Policy 18:979–980.  https://doi.org/10.1007/s10098-0151084-9CrossRefGoogle Scholar
  64. Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 23–56.  https://doi.org/10.1201/9781315173351-3CrossRefGoogle Scholar
  65. Saxena G, Bharagava RN, Kaithwas G, Raj A (2015) Microbial indicators, pathogens and methods for their monitoring in water environment. J Water Health 13:319–339.  https://doi.org/10.2166/wh.2014.275CrossRefGoogle Scholar
  66. Saxena G, Chandra R, Bharagava RN (2016) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev Env Contam Toxicol:31–69. https://doi.org/10.1007/398_2015_5009CrossRefGoogle Scholar
  67. Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019) Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects. Rev Environ Contam Toxicol. https://doi.org/10.1007/398_2019_24Google Scholar
  68. Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9CrossRefGoogle Scholar
  69. Sivaprakasam S, Mahadevan S, Sekar S, Rajakumar S (2008) Biological treatment of tannery wastewater by using salt-tolerant bacterial strains. Microb Cell Factories 7:15CrossRefGoogle Scholar
  70. Stephenson C, Black CR (2014) One step forward, two steps back: the evolution of phytoremediation into commercial technologies. Biosci Horiz 7:1–15CrossRefGoogle Scholar
  71. Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kastner M, Bederski O, Muller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117CrossRefGoogle Scholar
  72. Ullah A, Heng S, Munis M, Hussain F, Shah F, Xiyan Y (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot.  https://doi.org/10.1016/j.envexpbot.2015.05.001CrossRefGoogle Scholar
  73. Vymazal J (2010) Constructed wetlands for wastewater treatment. Water 2(3):530–549CrossRefGoogle Scholar
  74. Wan X, Lei M, Chen T (2016) Cost–benefit calculation 1383 of phytoremediation technology for heavy-metal-contaminated soil. Sci Total Environ 563–564:796–802CrossRefGoogle Scholar
  75. Wang YC, Ko CH, Chang FC, Chen PY, Liu TF, Sheu YS, shih TL, Teng CJ (2011) Bioenergy production potential for aboveground biomass from a subtropical constructed wetland. Biomass Bioenerg 35:50–58CrossRefGoogle Scholar
  76. Wick LY, Shi L, Harms H (2007) Electro-bioremediation of hydrophobic organic soil-contaminants: A review of fundamental interactions. Electrochim Acta 52:3441–3448CrossRefGoogle Scholar
  77. Wu C-H, Lai C-Y, Lin C-W, Kao M-H (2013) Generation of power by microbial fuel cell with ferricyanide in biodegradation of benzene. CLEAN Soil Air Water 41:390–395.  https://doi.org/10.1002/clen.201200198CrossRefGoogle Scholar
  78. Yadav AK, Dash P, Mohanty A, Abbassi R, Mishra BK (2012) Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal. Ecol Eng 47:126–131CrossRefGoogle Scholar
  79. Yan F, Reible D (2015) Electro-bioremediation of contaminated sediment by electrode enhanced capping. J Environ Manag 15(155):154–161CrossRefGoogle Scholar
  80. Yan Z, Song N, Cai H, Tay J-H, Jiang H (2012) Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide. J Hazard Mater 199–200:217–225.  https://doi.org/10.1016/j.jhazmat.2011.10.087CrossRefGoogle Scholar
  81. Yusuf RO, Noor ZZ, Abu Hassan MA, Agarry SE, Solomon BO (2013) A comparison of the efficacy of two strains of Bacillus subtilis and Pseudomonas fragi in the treatment of tannery wastewater. Desalin Water Treat 51(16–18):3189–3195CrossRefGoogle Scholar
  82. Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12:1011–1020.  https://doi.org/10.1111/j.1462-2920.2009.02145.xCrossRefGoogle Scholar
  83. Zhang F, Ge Z, Grimaud J, Hurst J, He Z (2013a) Long-term performance of literscale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environ Sci Technol 47(9):4941–4948CrossRefGoogle Scholar
  84. Zhang F, Ge Z, Grimaud J, Hurst J, He Z (2013b) In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant. Bioresour Technol 136:316–321CrossRefGoogle Scholar
  85. Zhang DQ, Jinadasa KBSN, Gersberg RM, Liu Y, Tan SK, Ng WJ (2015) Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000–2013). J Environ Sci 30:30–46CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Gaurav Saxena
    • 1
  • Surya Pratap Goutam
    • 2
  • Akash Mishra
    • 3
  • Sikandar I. Mulla
    • 4
  • Ram Naresh Bharagava
    • 1
  1. 1.Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Microbiology (DM)Babasaheb Bhimrao Ambedkar (Central) UniversityLucknowIndia
  2. 2.Advanced Materials Research Laboratory, Department of Applied Physics (DAP), School for Physical Sciences (SPS)Babasaheb Bhimrao Ambedkar University (A Central University)LucknowIndia
  3. 3.Defence Institute of Bio-Energy Research (DIBER), Defence Research and Development Organization (DRDO), Ministry of DefenceGovernment of IndiaHaldwaniIndia
  4. 4.CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban EnvironmentChinese Academy of SciencesXiamenPeople’s Republic of China

Personalised recommendations