Research on Application of PCA and K-Means Clustering in Enterprise Human Resources

  • Hong-hua SunEmail author
  • Qing-yang Li
Conference paper


For enterprises, the effective allocation of human resources is of utmost importance. In order to solve the problems existing in the recruitment and assignment of employees, the application of principal component analysis is used to reduce the dimension of evaluation indicators, and K-means clustering analysis of data after dimension reduction. By comparing the size of weighted comprehensive evaluation values of the cluster centers, the four classes are sorted among classes. By comparing the size of principal components scores, achieve within the class sorting, so as to achieve the total ranking results. Case studies show that enterprises can use this method to classify recruiters according to the actual situation, and the evaluation results are conducive to arrange reasonable jobs for new hires.


Comprehensive assessment PCA K-means 



This study was supported by the Inner Mongolia Natural Science Found (Grant No. 2014BS0707).


  1. 1.
    F.S. Wang, Q.B. Rong, H.J. Zhang, PCA-based safety evaluation model on geological environment. J. Comput. Methods Sci. Eng. 15(3), 559–568 (2015)Google Scholar
  2. 2.
    J.G. Cui, X. Yan, X.P. Pu, Y.W. Qi, L.Y. Jiang, J.Q. Shi, Aero-engine fault diagnosis based on dynamic PCA and improved SVM. Meas. Diagn. 35(1), 94–99 (2015)Google Scholar
  3. 3.
    C.D. Tong, T. Lan, X.H. Shi, Fault detection by decentralized dynamic PCA algorithm on mutual information. Huagong Xuebao/CIESC J. 67(10), 4317–4323 (2016)Google Scholar
  4. 4.
    Y.J. Wang, F.M. Sun, M.X. Jia, Online monitoring method for multiple operating batch processes based on local collection standardization and multi-model dynamic PCA. Can. J. Chem. Eng. 94(10), 1965–1976 (2016)CrossRefGoogle Scholar
  5. 5.
    F.W. Chu, Anomaly detection of hydropower generating set using operation condition and adaptive PCA. Int. J. Power Energy Syst. 37(1), 34–44 (2017)Google Scholar
  6. 6.
    X.H. Peng, PCA-BP based analysis of the evaluation of computerized accounting information. Int. J. Hybrid Inf. Technol. 9(8), 277–288 (2016)CrossRefGoogle Scholar
  7. 7.
    X.G. Xiang, J. Yang, Q.P. Chen, Color face recognition by PCA-like approach. Neurocomputing 152, 231–235 (2015)CrossRefGoogle Scholar
  8. 8.
    C.G. Turhan, H.S. Bilge, Class-wise two-dimensional PCA method for face recognition. IET Comput. Vis. 11(4), 286–300 (2017)CrossRefGoogle Scholar
  9. 9.
    J.J. Hu, G.Z. Tan, F.G. Luan, A.S.M. Libda, 2DPCA versus PCA for face recognition. J. Cent. South Univ. 22(5), 1809–1816 (2015)CrossRefGoogle Scholar
  10. 10.
    G.N. Li, Y.P. Hu, H.X. Chen, H.R. Li, PCA-SVDD-based chiller fault detection method. J. Huazhong Univ. Sci. Technol. (Natural Science Edition) 43(8), 119–122 (2015)Google Scholar
  11. 11.
    M.A. Belarbi, S. Mahmoudi, G. Belalem, PCA as dimensionality reduction for large-scale image retrieval systems. Int. J. Ambient Comput. Intell. 8(4), 45–58 (2017)CrossRefGoogle Scholar
  12. 12.
    X. Zhong, D. Enke, Forecasting daily stock market return using dimensionality reduction. Expert Syst. Appl. 67, 126–139 (2017)CrossRefGoogle Scholar
  13. 13.
    Y.L. Dai, Y. Wang, G.J. Wang, Package balancing k-means algorithm for physical distribution. Int. J. Comput. Sci. Eng. 14(4), 349–358 (2017)Google Scholar
  14. 14.
    G. Zhang, C.C. Zhang, H.Y. Zhang, Improved K-means algorithm based on density Canopy. Knowl. Based Syst. 145, 1–14 (2018)CrossRefGoogle Scholar
  15. 15.
    W. Li, J.Y. Zhao, T.S. Yan, Improved K-means clustering algorithm optimizing initial clustering centers based on average difference degree. Kongzhi yu Juece/Control Decis. 32(4), 759–762 (2017)Google Scholar
  16. 16.
    G. Zhao, The application of user behavior analysis by improved K-means algorithm based on Hadoop. Revista de la Facultad de Ingenieria 31(7), 111–120 (2016)Google Scholar
  17. 17.
    Q.X. Zhang, J.X. Li, Application of K-means clustering algorithm in information security problem. Revista de la Facultad de Ingenieria 32(11), 462–467 (2017)Google Scholar
  18. 18.
    T.S. Xu, H.D. Chang, G.Y. Liu, C.W. Tan, Hierarchical K-means method for clustering large-scale advanced metering infrastructure data. IEEE Trans. Power Deliv. 32(2), 609–616 (2017)CrossRefGoogle Scholar
  19. 19.
    M.F.M. Yunoh, S. Abdullah, M.H.M. Saad, Z.M. Nopiah, M.Z. Nuawi, K-means clustering analysis and artificial neural network classification of fatigue strain signals. J. Brazilian Soc. Mech. Sci. Eng. 39(3), 757–764 (2017)CrossRefGoogle Scholar
  20. 20.
    G.K. Patel, V.K. Dabhi, H.B. Prajapati, Clustering using a combination of particle swarm optimization and K-means. J. Intell. Syst. 26(3), 457–469 (2017)Google Scholar
  21. 21.
    Z.X. Fan, Y. Sun, H. Luo, Clustering of college students based on improved K-means algorithm. J. Comput. (Taiwan) 28(6), 195–203 (2017)Google Scholar
  22. 22.
    S.Y. Xiao, B. Wang, J. Zhang, Q.F. Zhang, J.Z. Zou, Automatic sleep stage classification based on an improved k-means clustering algorithm. Shengwu Yixue Gongchengxue Zazhi/J. Biomed. Eng. 33(5), 847–854 (2016)Google Scholar
  23. 23.
    Y.F. Jin, G. Li, Application of improved k-means algorithm in evaluation of network resource allocation. Boletin Tecnico/Tech. Bull. 55(5), 284–292 (2017)Google Scholar
  24. 24.
    X.B. Guo, Y. Zhai, K-means clustering based reinforcement learning algorithm for automatic control in robots. Int. J. Simul. Syst. Sci. Technol. 17(24) (2016)Google Scholar
  25. 25.
    Q. Xu, C. Ding, J.P. Liu, B. Luo, PCA-guided search for K-means. Pattern Recogn. Lett. 54, 50–55 (2015)CrossRefGoogle Scholar
  26. 26.
    P.A. Farhad, B. Stephen, Preconditioned data sparsification for big data with applications to PCA and K-mean. IEEE Trans. Inf. Theory 63(5), 2954–2974 (2017)Google Scholar
  27. 27.
    N.M. Mohammadi, H. Ardeshir, M. Abbas, Application of K-means and PCA approaches to estimation of gold grade in Khooni district (central Iran). Acta Geochim. 37(1), 102–112 (2018)Google Scholar
  28. 28.
    D.X. Liu, Design of wireless sensor intelligent traffic control system based on K-means algorithm. Revista de la Facultad de Ingenieria 32(12), 354–362 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Industrial EngineeringInner Mongolia University of TechnologyHohhotChina

Personalised recommendations