Advertisement

The IITM Earth System Model (ESM): Development and Future Roadmap

  • R. KrishnanEmail author
  • P. Swapna
  • Ramesh Vellore
  • Sandeep Narayanasetti
  • A. G. Prajeesh
  • Ayantika Dey Choudhury
  • Manmeet Singh
  • T. P. Sabin
  • J. Sanjay
Chapter
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

This article provides a brief account of the development of the IITM Earth System Model (IITM-ESM) at the Centre for Climate Change Research, Indian Institute of Tropical Meteorology, in order to address key questions pertaining to the science of Climate Change. The IITM-ESM has been developed by transforming a state-of-the-art seasonal prediction model into a radiatively balanced climate modeling framework suitable for investigating long-term climate variability and change. The IITM-ESM is the first climate model from India to contribute to the Coupled Modeling Intercomparison Programme—Phase 6 (CMIP6) for the Intergovernmental Panel for Climate Change (IPCC) sixth assessment report (AR6). The IITM-ESM has shown promising capabilities required for making reliable assessments of the impacts of climate change on the (a) Global and regional monsoon hydroclimate, (b) Regional weather and climate extremes, (c) Global and Indian Ocean sea level, (d) Marine primary productivity and mechanisms controlling the ocean carbon cycle, and (e) Global and Himalayan cryosphere, to name a few important ones. Future plans for the development of high-resolution climate change projections and the next-generation community version of the IITM-ESM are also briefly discussed.

Keywords

IITM-ESM  Global climate change Indian and regional monsoon systems 

References

  1. Abhik, S., R.P.M. Krishna, M. Mahakur, M. Ganai, P. Mukhopadhyay, and J. Dudhia. 2017. Revised cloud processes to improve the mean and intraseasonal variability of Indian summer monsoon in climate forecast system: Part 1. Journal of Advances in Modeling Earth Systems 9: 1–28.  https://doi.org/10.1002/2016MS000819.CrossRefGoogle Scholar
  2. Bollasina, M.A., Y. Ming, and V. Ramaswamy. 2011. Anthropogenic aerosols and the weakening of the South Asian Summer Monsoon. Science 334 (6055): 502–505.  https://doi.org/10.1126/science.1204994.CrossRefGoogle Scholar
  3. Ek, M.B., K.E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, and J.D. Tarpley. 2003. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research: Atmospheres 108 (D22): n/a-n/a.  https://doi.org/10.1029/2002JD003296.CrossRefGoogle Scholar
  4. Fiedler, B.H. 2000. Dissipative heating in climate models. Quarterly Journal of the Royal Meteorological Society 126 (564): 925–939.  https://doi.org/10.1256/smsqj.56407.CrossRefGoogle Scholar
  5. Flato, G., J. Marotzke, B. Abiodun, P. Braconnot, S. C. Chou, W. Collins, and M. Rummukainen. 2013. Evaluation of climate models. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 741–866. https://doi.org/10.1017/CBO9781107415324.Google Scholar
  6. Forster, P.M., T. Andrews, P. Good, J.M. Gregory, L.S. Jackson, and M. Zelinka. 2013. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. Journal of Geophysical Research: Atmospheres 118 (3): 1139–1150.  https://doi.org/10.1002/jgrd.50174.CrossRefGoogle Scholar
  7. Ganai, M., R. Phani Murali Krishna, P. Mukhopadhyay, and M. Mahakur. 2015. The impact of revised simplified Arakawa-Schubert scheme on the simulation of mean and diurnal variability associated with active and break phases of Indian summer monsoon using CFSv2. Journal of Geophysical Research Atmospheres 9301–9323.  https://doi.org/10.1002/2014JD021636.Google Scholar
  8. Griffies, S.M., M. Schmidt, and M. Herzfeld. 2009. Elements of mom4p1. GFDL Ocean Group Technical Report 6, 444 pp. http://data1.gfdl.noaa.gov/~arl/pubrel/r/mom4p1/src/mom4p1/doc/guide4p1.pdf.
  9. Han, J., and H.-L. Pan. 2011. Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather and Forecasting 26 (4): 520–533.  https://doi.org/10.1175/WAF-D-10-05038.1.CrossRefGoogle Scholar
  10. Han, J., M.L. Witek, J. Teixeira, R. Sun, H.-L. Pan, J.K. Fletcher, and C.S. Bretherton. 2016. Implementation in the NCEP GFS of a hybrid eddy-diffusivity mass-flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Weather and Forecasting 31 (1): 341–352.  https://doi.org/10.1175/WAF-D-15-0053.1.CrossRefGoogle Scholar
  11. IPCC, 2013. Climate Change 2013. The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., 1535 pp. , United Kingdom and New York, NY, USA: Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781107415324.Google Scholar
  12. Khodri, M., T. Izumo, J. Vialard, S. Janicot, C. Cassou, M. Lengaigne, and M.J. McPhaden. 2017. Tropical explosive volcanic eruptions can trigger El Ninõ by cooling tropical Africa. Nature Communications 8(1): 1–12.  https://doi.org/10.1038/s41467-017-00755-6.
  13. Kitoh, A. 2017. The Asian monsoon and its future change in climate models: A review. 95.  https://doi.org/10.2151/jmsj.2017-002.CrossRefGoogle Scholar
  14. Kitoh, A., and S. Kusunoki. 2008. East Asian summer monsoon simulation by a 20-km mesh AGCM. Climate Dynamics 31 (4): 389–401.  https://doi.org/10.1007/s00382-007-0285-2.CrossRefGoogle Scholar
  15. Krishnan, R., T.P. Sabin, D.C. Ayantika, A. Kitoh, M. Sugi, H. Murakami, and K. Rajendran. 2013. Will the South Asian monsoon overturning circulation stabilize any further? Climate Dynamics 40(1–2): 187–211.  https://doi.org/10.1007/s00382-012-1317-0.CrossRefGoogle Scholar
  16. Krishnan, R., T.P. Sabin, R. Vellore, M. Mujumdar, J. Sanjay, B.N. Goswami, and P. Terray. 2016. Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world. Climate Dynamics 47(3–4): 1007–1027.  https://doi.org/10.1007/s00382-015-2886-5.CrossRefGoogle Scholar
  17. Large, W.G., J.C. McWilliams, and S.C. Doney. 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics.  https://doi.org/10.1029/94RG01872.CrossRefGoogle Scholar
  18. Liu, F., J. Chai, B. Wang, J. Liu, X. Zhang, and Z. Wang. 2016. Global monsoon precipitation responses to large volcanic eruptions. Scientific Reports 6 (April): 1–11.  https://doi.org/10.1038/srep24331.CrossRefGoogle Scholar
  19. Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, and I.G. Watterson. 2007. Global climate projections. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Google Scholar
  20. Moorthi, S., H.L. Pan, and P. Caplan. 2001. Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system, NWS Tech. Procedures Bulletin 484: 14. NCEP, Silver Spring, Md.Google Scholar
  21. Ning, L., J. Liu, and W. Sun. 2017. Influences of volcano eruptions on Asian Summer Monsoon over the last 110 years. Scientific Reports 7: 3–8.  https://doi.org/10.1038/srep42626.CrossRefGoogle Scholar
  22. Parthasarathy, B., A.A. Munot and D.R. Kothawale. 1994. All-India monthly and seasonal rainfall series: 1871–1993. Theoretical Applied Climatology 49:217–224.CrossRefGoogle Scholar
  23. Rajendran, K., and A. Kitoh. 2008. Indian summer monsoon in future climate projection by a super high-resolution global model.Google Scholar
  24. Ramanathan, V., C. Chung, D. Kim, T. Bettge, L. Buja, J.T. Kiehl, and M. Wild. 2005. Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proceedings of the National Academy of Sciences 102(15): 5326–5333.  https://doi.org/10.1073/pnas.0500656102.CrossRefGoogle Scholar
  25. Saha, S., S. Moorthi, H.L. Pan, X. Wu, J. Wang, S. Nadiga, M. Goldberg. 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society 91(8): 1015–1057.  https://doi.org/10.1175/2010BAMS3001.1.CrossRefGoogle Scholar
  26. Sharmila, S., S. Joseph, A.K. Sahai, S. Abhilash, and R. Chattopadhyay. 2015. Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models. Global and Planetary Change 124: 62–78.  https://doi.org/10.1016/j.gloplacha.2014.11.004.CrossRefGoogle Scholar
  27. Sperber, K.R., H. Annamalai, I.S. Kang, A. Kitoh, A. Moise, A. Turner, and T. Zhou. 2013. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dynamics 41.  https://doi.org/10.1007/s00382-012-1607-6.CrossRefGoogle Scholar
  28. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, and P.M. Midgley. 2013. Summary for policymakers. In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 33. https://doi.org/10.1017/CBO9781107415324.Google Scholar
  29. Swapna, P., M.K. Roxy, K. Aparna, K. Kulkarni, A.G. Prajeesh, K. Ashok, and B.N. Goswami. 2015. The IITM earth system model: Transformation of a seasonal prediction model to a long-term climate model. Bulletin of the American Meteorological Society 96 (8): 1351–1368.  https://doi.org/10.1175/BAMS-D-13-00276.1.CrossRefGoogle Scholar
  30. Swapna, P., R. Krishnan, N. Sandeep, Prajeesh, Ayantika, Manmeet, and V. Ramesh. 2018. Long-term climate simulations using the IITM-ESMv2 with focus on the South Asian monsoon. Journal of Advances in Modeling Earth Systems.  https://doi.org/10.1029/2017ms001262.CrossRefGoogle Scholar
  31. Taylor, K.E., R.J. Stouffer, and G.A. Meehl. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93 (4): 485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1.CrossRefGoogle Scholar
  32. Turner, A.G., and H. Annamalai. 2012. Climate change and the South Asian summer monsoon. Nature Climate Change 2 (8): 587–595.  https://doi.org/10.1038/nclimate1495.CrossRefGoogle Scholar
  33. Wang, C., L. Zhang, S.K. Lee, L. Wu, and C.R. Mechoso. 2014. A global perspective on CMIP5 climate model biases. Nature Climate Change 4 (3): 201–205.  https://doi.org/10.1038/nclimate2118.CrossRefGoogle Scholar
  34. Winton, M. 2000. A reformulated three-layer sea ice model. Journal of Atmospheric and Oceanic Technology 17 (4): 525–531.  https://doi.org/10.1175/1520-0426(2000)017%3c0525:ARTLSI%3e2.0.CO;2.CrossRefGoogle Scholar
  35. Zhang, L., and C. Zhao. 2015. Processes and mechanisms for the model SST biases in the North Atlantic and North Pacific: A link with the Atlantic meridional overturning circulation. Journal of Advances in Modeling Earth Systems 7 (2): 739–758.  https://doi.org/10.1002/2014MS000415.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • R. Krishnan
    • 1
    Email author
  • P. Swapna
    • 1
  • Ramesh Vellore
    • 1
  • Sandeep Narayanasetti
    • 1
  • A. G. Prajeesh
    • 1
  • Ayantika Dey Choudhury
    • 1
  • Manmeet Singh
    • 1
  • T. P. Sabin
    • 1
  • J. Sanjay
    • 1
  1. 1.Centre for Climate Change ResearchIndian Institute of Tropical MeteorologyPuneIndia

Personalised recommendations