Advertisement

Convective Available Potential Energy and Precipitation in a Cloud-Resolving Model Simulation of Indian Summer Monsoon

  • Deepeshkumar JainEmail author
  • Arindam Chakraborty
  • Ravi S. Nanjundiah
Chapter
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

Relationship between convective available potential energy (CAPE) and precipitation is explored in a season-long cloud-resolving model (CRM) simulation of Indian summer monsoon. The location of maximum precipitation and CAPE does not always coincide in a CRM simulation. The diurnal land surface heating is shown to have an effect on CAPE and precipitation over ocean. Convective inhibition energy is shown to have a significant effect on the location of precipitation. It is shown that mass flux parameterizations which depend on CAPE consumption do not get the location or magnitude of precipitation right at CRM resolution. It is emphasized that once the model resolution starts approaching cloud scale, the basic assumption of convective quasi-equilibrium is not sufficient and representation of organized mesoscale convective systems becomes imperative. Present-day cumulus parameterizations do not include any representation of organized mesoscale convective systems. We show that CAPE consumed by these systems not only triggers vertical motion but also contributes to horizontal motion of the system.

Keywords

CRM CAPE CINE LCL LFC MCS 

References

  1. Arakawa, A. 2004. The cumulus parameterization problem: Past, present, and future. Journal of Climate 17 (13): 2493–2525.CrossRefGoogle Scholar
  2. Arakawa, A., and W.H. Schubert. 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, part I. Journal of the Atmospheric Sciences 31 (3): 674–701.CrossRefGoogle Scholar
  3. Arakawa, A., and C.M. Wu. 2013. A unified representation of deep moist convection in numerical modeling of the atmosphere, part I. Journal of the Atmospheric Sciences 70 (7): 1977–1992.CrossRefGoogle Scholar
  4. Ashok, K., Z. Guan, and T. Yamagata. 2001. Impact of the Indian ocean dipole on the relationship between the Indian monsoon rainfall and enso. Geophysical Research Letters 28 (23): 4499–4502.CrossRefGoogle Scholar
  5. Donner, L.J., and V.T. Phillips. 2003. Boundary layer control on convective available potential energy: Implications for cumulus parameterization. Journal of Geophysical Research: Atmospheres 108 (D22).Google Scholar
  6. Gadgil, S. 2003. The Indian monsoon and its variability. Annual Review of Earth and Planetary Sciences 31 (1): 429–467.CrossRefGoogle Scholar
  7. Goswami, B.N., and R. Ajaya Mohan. 2001. Intraseasonal oscillations and interannual variability of the Indian summer monsoon. Journal of Climate 14 (6): 1180–1198.CrossRefGoogle Scholar
  8. Goswami, B.B., P. Mukhopadhyay, M. Khairoutdinov, and B. Goswami. 2013. Simulation of indian summer monsoon intraseasonal oscillations in a superparameterized coupled climate model: Need to improve the embedded cloud resolving model. Climate Dynamics 41 (5–6): 1497–1507.CrossRefGoogle Scholar
  9. Hong, S.Y., J. Dudhia, and S.H. Chen. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review 132 (1): 103–120.CrossRefGoogle Scholar
  10. Hong, S.Y., Y. Noh, and J. Dudhia. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review 134 (9): 2318–2341.CrossRefGoogle Scholar
  11. Houze Jr. R.A. 2014. Cloud dynamics, vol. 104. New York: Academic Press.Google Scholar
  12. Huffman, G.J., D.T. Bolvin, E.J. Nelkin, D.B. Wolff, R.F. Adler, G. Gu, Y. Hong, K.P. Bowman, and E.F. Stocker. 2007. The trmm multisatellite precipitation analysis (tmpa): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology 8 (1): 38–55.CrossRefGoogle Scholar
  13. Jain, D.K., A. Chakraborty, and R.S. Nanjundiah. 2012. On the role of cloud adjustment time scale in simulating precipitation with relaxed arakawa-schubert convection scheme. Meteorology and Atmospheric Physics 115 (1–2): 1–13.CrossRefGoogle Scholar
  14. Jain, D.K., A. Chakraborty, and R.S. Nanjundiah. 2013. Role of the cloud adjustment time scale in simulation of the interannual variability of indian summer monsoon. Meteorology and Atmospheric Physics 122 (3–4): 159–173.CrossRefGoogle Scholar
  15. Kain, J.S., and J.M. Fritsch. 1993. Convective parameterization for mesoscale models: The kain-fritsch scheme, pp. 165–170.CrossRefGoogle Scholar
  16. Kain, J.S. 2004. The kain-fritsch convective parameterization: An update. Journal of Applied Meteorology 43 (1): 170–181.CrossRefGoogle Scholar
  17. Lau, K., G. Yang, and S. Shen. 1988. Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia. Monthly Weather Review 116 (1): 18–37.CrossRefGoogle Scholar
  18. Moorthi, S., and M.J. Suarez. 1992. Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models. Monthly Weather Review 120 (6): 978–1002.CrossRefGoogle Scholar
  19. National Centers for Environmental Prediction NUDoC National Weather Service. 2000. NCEP FNL operational model global tropospheric analyses, continuing from July 1999.  https://doi.org/10.5065/D6M043C6.
  20. Rajendran, K., R.S. Nanjundiah, S. Gadgil, and J. Srinivasan. 2012. How good are the simulations of tropical SST–rainfall relationship by IPCC AR4 atmospheric and coupled models? Journal of Earth System Science, pp. 1–16.Google Scholar
  21. Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski. 2003. Breaking the cloud parameterization deadlock. Bulletin of the American Meteorological Society 84 (11): 1547–1564.CrossRefGoogle Scholar
  22. Saji, N., B. Goswami, P. Vinayachandran, and T. Yamagata. 1999. A dipole mode in the tropical Indian ocean. Nature 401 (6751): 360–363.Google Scholar
  23. Skamarock, W.C., and J.B. Klemp. 2008. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics 227 (7): 3465–3485.CrossRefGoogle Scholar
  24. Sperber, K.R., H. Annamalai, I.S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou. 2013. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dynamics 41 (9–10): 2711–2744.CrossRefGoogle Scholar
  25. Subrahmanyam, K.V., K.K. Kumar, and A. Narendra Babu. 2015. Phase relation between cape and precipitation at diurnal scales over the Indian summer monsoon region. Atmospheric Science Letters 16 (3): 346–354.CrossRefGoogle Scholar
  26. Tiedtke, M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Monthly Weather Review 117 (8): 1779–1800.CrossRefGoogle Scholar
  27. Webster, P.J., and S. Yang. 1992. Monsoon and enso: Selectively interactive systems. Quarterly Journal of the Royal Meteorological Society 118 (507): 877–926.CrossRefGoogle Scholar
  28. Wu, C.M., and A. Arakawa. 2014. A unified representation of deep moist convection in numerical modeling of the atmosphere, part II. Journal of the Atmospheric Sciences 71 (6): 2089–2103.CrossRefGoogle Scholar
  29. Yano, J.I., and R. Plant. 2012. Convective quasi-equilibrium. Reviews of Geophysics 50 (4).Google Scholar
  30. Yano, J.I., and M.W. Moncrieff. 2016. Numerical archetypal parameterization for mesoscale convective systems. Journal of the Atmospheric Sciences 73 (7): 2585–2602.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Deepeshkumar Jain
    • 1
    • 2
    Email author
  • Arindam Chakraborty
    • 1
  • Ravi S. Nanjundiah
    • 1
    • 2
  1. 1.Indian Institute of ScienceBangaloreIndia
  2. 2.Institute of Tropical MeteorologyPuneIndia

Personalised recommendations