New Pathways for Moist Convection Parameterisation

  • A. Pier SiebesmaEmail author
  • Jesse Dorrestijn
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


This chapter starts with an introduction to standard mass-flux parameterisations and closures for moist convection which are used in most large-scale models. The shortcomings of this approach will be discussed, especially for higher resolutions where standard assumptions such as quasi-equilibrium start to break down. New pathways that use a stochastic approach and are scale aware will be discussed. These will also allow to incorporate the effect of mesoscale organisation into parameterisations for moist convection.


Clouds Moist convection Stochastic parameterisation Grey zone Conditional Markov Chains 


  1. Arakawa, A., and H. Schubert. 1974. Interaction of a cumulus cloud ensemble with the large-scale environment. Part I: Theoretical formulation and sensitivity tests. Journal of the Atmospheric Sciences 31: 674–701.CrossRefGoogle Scholar
  2. Arakawa, A., J.-H. Jung, and C.-M. Wu. 2011. Toward unification of the multiscale modeling of the atmosphere. Atmospheric Chemistry and Physics 11 (8): 3731–3742.CrossRefGoogle Scholar
  3. Bengtsson, L., M. Steinheimer, P. Bechtold, and J.-F. Geleyn. 2013. A stochastic parametrization for deep convection using cellular automata. Quarterly Journal of the Royal Meteorological Society 139 (675): 1533–1543.CrossRefGoogle Scholar
  4. Buizza, R., M. Miller, and T.N. Palmer. 2007. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quarterly Journal of the Royal Meteorological Society 125 (560): 2887–2908.CrossRefGoogle Scholar
  5. de Roode, S.R., A.P. Siebesma, H.J.J. Jonker, and Y. de Voogd. 2012. Parameterization of the vertical velocity equation for shallow cumulus clouds. Monthly Weather Review 140: 2424–2436.CrossRefGoogle Scholar
  6. de Rooy, W.C., P. Bechtold, K. Frohlich, C. Hohenegger, H.H.J. Jonker, D. Mironov, A.P. Siebesma, J. Teixeira, and J.-I. Yano. 2013. Entrainment and detrainment in cumulus convection: an overview. QJRMS 139 (670): 1–19.Google Scholar
  7. Dee, D.P., S.J. Uppala, A.P. Simmons, P. Berrisford, S. Poli, U. Kobayashi, A. Andrae, M.G. Balmaseda, P. Balsamo, P. Bauer, M. Bechtold, A.C. Beljaars, L.J. van de Berg, N. Bidlot, C. Bormann, R. Delsol, M. Dragani, J. Fuentes, A.L. Geer, B. Haimberger, S.H. Healy, V. Hersbach, E.L. Hlm, P. Isaksen, M. Kllberg, M. Khler, P. Matricardi, A.M. McNally, B. MongeSanz, J.J. Morcrette, B.K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.N. Thpaut, and F. Vitart. 2011. The ERAInterim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society 137 (656): 553–597.CrossRefGoogle Scholar
  8. Dorrestijn, J., D.T. Crommelin, J.A. Biello, and S.J. Böing. 2013. A data-driven multi-cloud model for stochastic parametrization of deep convection. Philosophical Transactions of the Royal Society A 371 (1991): 20120374.CrossRefGoogle Scholar
  9. Dorrestijn, J., D.T. Crommelin, A.P. Siebesma, H.J.J. Jonker, and C. Jakob. 2015. Stochastic parameterization of convective area fractions with a multicloud model inferred from observational data. Journal of the Atmospheric Sciences 72 (2): 854–869.CrossRefGoogle Scholar
  10. Dorrestijn, J., D.T. Crommelin, A.P. Siebesma, H.J.J. Jonker, and F. Selten. 2016. Stochastic convection parameterization with Markov chains in an intermediate-complexity GCM. JAS 73: 1367–1382.CrossRefGoogle Scholar
  11. Fritsch, J.M., and C.F. Chappell. 1980. Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. Journal of the Atmospheric Sciences 37 (8): 1722–1733.CrossRefGoogle Scholar
  12. Khouider, B., J. Biello, A.J. Majda, et al. 2010. A stochastic multicloud model for tropical convection. Communications in Mathematical Sciences 8 (1): 187–216.CrossRefGoogle Scholar
  13. Kumar, V.V., C. Jakob, A. Protat, P.T. May, and L. Davies. 2013. The four cumulus cloud modes and their progression during rainfall events: AC-band polarimetric radar perspective. Journal of Geophysical Research: Atmospheres 118 (15): 8375–8389.Google Scholar
  14. Loriaux, J.M., G. Lenderink, and A.P. Siebesma. 2017. Large-scale controls on extreme precipitation. Journal of Climate 30 (3): 955–968.CrossRefGoogle Scholar
  15. Mapes, B.E., and R.B. Neale. 2011. Parameterizing convective organization to escape the entrainment dilemma. Journal of Advances in Modeling Earth Systems 3 (06).CrossRefGoogle Scholar
  16. Neggers, R.A.J. 2015. Exploring bin-macrophysics models for moist convective transport and clouds. Journal of Advances in Modeling Earth Systems 7 (4): 2079–2104.CrossRefGoogle Scholar
  17. Peters, K., T. Crueger, C. Jakob, and B. Möbis. 2017. Improved MJO-simulation in ECHAM6.3 by coupling a stochastic multicloud model to the convection scheme. Journal of Advances in Modeling Earth Systems 9 (1): 193–219.CrossRefGoogle Scholar
  18. Plant, R.S., and G.C. Craig. 2008. A stochastic parameterization for deep convection based on equilibrium statistics. Journal of the Atmospheric Sciences 65 (1): 87–105.CrossRefGoogle Scholar
  19. Sakradzija, M., A. Seifert, and T. Heus. 2015. Fluctuations in a quasi-stationary shallow cumulus cloud ensemble. Nonlinear Processes in Geophysics 22 (1): 65–85.CrossRefGoogle Scholar
  20. Siebesma, A.P. 1998. Shallow cumulus convection. In Buoyant convection in geophysical flows, vol. 513, ed. E.J. Plate, E.E. Fedorovich, D.X. Viegas, and J.C. Wyngaard, 441–486. New York: Kluwer Academic Publishers.CrossRefGoogle Scholar
  21. Sušelj, K., J. Teixeira, and D. Chung. 2013. A unified model for moist convective boundary layers based on a stochastic eddy-diffusivity/mass-flux parameterization. Journal of the Atmospheric Sciences 70 (7): 1929–1953.CrossRefGoogle Scholar
  22. Teixeira, J., and C.A. Reynolds. 2008. Stochastic nature of physical parameterizations in ensemble prediction: A stochastic convection approach. Monthly Weather Review 136 (2): 483–496.CrossRefGoogle Scholar
  23. Tiedtke, M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Monthly Weather Review 117 (8): 1779–1800.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Faculty of Civil Engineering and GeoscienceDelft University of TechnologyDelftThe Netherlands

Personalised recommendations