Current and Future Activities in Unified Modelling and Data Assimilation at NCMRWF

  • E. N. RajagopalEmail author
  • A. K. Mitra
  • Munmun Das Gupta
  • John P. George
  • Raghavendra Ashrit
  • Abhijit Sarkar
  • A. Jayakumar
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


State-of-the-art Numerical Weather Prediction (NWP) models can provide useful weather information in the medium-range timescales (3 to 10 days ahead) which can be applied for decision-making in different sectors like agriculture, power distribution, disaster management and water resource management. Forecasting of monsoon weather system and associated rainfall is one of the most difficult areas in NWP due to complexities in land–ocean–atmosphere interactions and due to interactions between convective systems of cloud scale, mesoscale and synoptic and planetary scales. However, significant improvements can be noticed, in recent years. Some of the chief contributors to the improvement are improved data assimilation methods, enhanced satellite coverage, high-performance computers (HPCs) and high-resolution NWP models. This chapter documents current activities at NCMRWF involving the Unified Model and its Data Assimilation used for summer monsoon forecast in the medium-range timescales. Additionally, the research efforts made for testing and implementation of ensemble models and coupled models are also discussed.


Medium range Ensemble model Data assimilation 


  1. Aranami, K., T. Davies, and N. Wood. 2015. A mass restoration scheme for limited-area models with semi-Lagrangian advection. Quarterly Journal of the Royal Meteorological Society 141: 1795–1803.CrossRefGoogle Scholar
  2. Atger, F. 1999. The skill of ensemble prediction systems. Monthly Weather Review 127: 1941–1953.CrossRefGoogle Scholar
  3. Best, M.J., M. Pryor, D.B. Clark, G.G. Rooney, R.L.H. Essery, C.B. Ménard, J.M. Edwards, M.A. Hendry, A. Porson, N. Gedney, L.M. Mercado, S. Sitch, E. Blyth, O. Boucher, P.M. Cox, C.S.B. Grimmond, and , R.J. Harding. 2011. The Joint UK Land Environment Simulator (JULES), model description – part 1: Energy and water fluxes. Geoscientific Model Development 4 (1): 677–699.CrossRefGoogle Scholar
  4. Boutle, I.A., J.E.J. Eyre, and A.P. Lock. 2014. Seamless stratocumulus simulation across the turbulent gray zone. Monthly Weather Review 142: 1655–1668.CrossRefGoogle Scholar
  5. Boutle, I.A., A. Finnenkoetter, A.P. Lock, and H. Wells. 2016. The London model: Forecasting fog at 333 m resolution. Quarterly Journal of the Royal Meteorological Society 142: 360–371.CrossRefGoogle Scholar
  6. Buizza, R. 2010. Horizontal resolution impact on short and long range forecast error. Quarterly Journal of the Royal Meteorological Society 136: 1020–1035.CrossRefGoogle Scholar
  7. Buizza, R., and T. Palmer. 1998. Impact of ensemble size on ensemble prediction. Monthly Weather Review 126: 2503–2518.CrossRefGoogle Scholar
  8. Buizza, R., T. Petroliagis, T.N. Palmer, J. Barkmeijer, M. Hamrud, A. Hollingsworth, A. Simmons, and N. Wedi. 1998. Impact of model resolution and ensemble size on the performance of an ensemble prediction system. Quarterly Journal of the Royal Meteorological Society 124: 1935–1960.CrossRefGoogle Scholar
  9. Clayton, A. 2012. Incremental Analysis Update (IAU) Scheme. Unified Model Documentation Paper No. 31.Google Scholar
  10. Du, J., S.L. Mullen, and F. Sanders. 1997. Short-range ensemble forecasting of quantitative precipitation. Monthly Weather Review 125: 2427–2459.CrossRefGoogle Scholar
  11. Edwards, J.M., and A. Slingo. 1996. Studies with a flexible new radiation code. I: Choosing a configuration for a large‐scale model. Quarterly Journal of the Royal Meteorological Society 122: 689–719.CrossRefGoogle Scholar
  12. George, J.P., S. Indira Rani, A. Jayakumar, Saji Mohandas, Swapan Mallick, R. Rakhi, M.N.R. Sreevathsa, and E.N. Rajagopal. 2016. NCUM Data Assimilation System, NMRF/TR/01/2016, March 2016.Google Scholar
  13. Jayakumar, A., E.N. Rajagopal, I.A. Boutle, J.P. George, S. Mohandas, S. Webster, S. Aditi. 2018. An operational fog prediction system for Delhi using the 330 m Unified Model. Atmospheric Science Letters 19: e796.CrossRefGoogle Scholar
  14. Juhui, M.A., Y. Zhu, R. Wobus, and P. Wang. 2012. An effective configuration of ensemble size and horizontal resolution for the NCEP GEFS. Advances in Atmospheric Sciences 29: 782–794.CrossRefGoogle Scholar
  15. Kay, J.K., H.M. Kim, Y.Y. Park, and J. Son. 2013. Effect of doubling the ensemble size on the performance of ensemble prediction in the warm season using MOGREPS implemented at the KMA. Advances in Atmospheric Sciences 30: 1287–1302.CrossRefGoogle Scholar
  16. Lock, A.P., A.R. Brown, M.R. Bush, G.M. Martin, and R.N.B. Smith. 2000. A new boundary layer mixing scheme. Part I: Scheme description and single‐column model tests. Monthly Weather Review 128: 3187–3199.CrossRefGoogle Scholar
  17. Lodh, A., John P. George, and E.N. Rajagopal. 2016. Extended Kalman filter based land data assimilation system for soil moisture analysis at NCMRWF. Technical Report, NMRF/TR/06/2016.Google Scholar
  18. Mitra, A.K., A.K. Bohra, M.N. Rajeevan, and T.N. Krishnamurti. 2009. Daily Indian precipitation analysis from a merge of rain-gauge data with the TRMM TMPA satellite-derived rainfall estimates. Journal of the Meteorological Society of Japan 87A: 265–279.CrossRefGoogle Scholar
  19. Mitra, A.K., and coauthors. 2013a. Prediction of monsoon using a seamless coupled modelling system. Current Science 104 (10): 1369–1379.Google Scholar
  20. Mitra, A.K., I.M. Momin, E.N. Rajagopal, S. Basu, M.N. Rajeevan, and T.N. Krishnamurti. 2013b. Gridded daily Indian monsoon rainfall for 14 seasons: Merged TRMM and IMD gauge analyzed values. Journal of Earth System Science 122 (5): 1173–1182.CrossRefGoogle Scholar
  21. Mullen, S.L., and R. Buizza. 2002. The impact of horizontal resolution and ensemble size on probabilistic forecasts of precipitation by the ECMWF ensemble prediction system. Weather Forecasting 17: 173–191.CrossRefGoogle Scholar
  22. Rajagopal, E.N., G.R. Iyengar, John P. George, M. Das Gupta, Saji Mohandas, R. Siddharth, A. Gupta, M. Chourasia, V.S. Prasad, Aditi, K. Sharma, and A. Ashish. 2012. Implementation of Unified Model based analysis-forecast system at NCMRWF. NMRF/TR/2/2012, 45p.Google Scholar
  23. Rakhi, R., A. Jayakumar, M.N.R. Sreevathsa, and E.N. Rajagopal. 2016. Implementation and up-gradation of NCUM in Bhaskara HPC. NMRF/TR/03/2016, May 2016.Google Scholar
  24. Rawlins, F., S.P. Ballard, K.J. Bovis, A.M. Clayton, D. Li, G.W. Inverarity, A.C. Lorenc, and T.J. Payne. 2007. The Met Office global four-dimensional variational data assimilation scheme. Quarterly Journal of the Royal Meteorological Society 133: 347–362.CrossRefGoogle Scholar
  25. Sarkar, A., P. Chakraborty, J.P. George, and E.N. Rajagopal. 2016. Implementation of Unified Model based ensemble prediction system at NCMRWF (NEPS). NMRF/TR/02/2016.Google Scholar
  26. Sundqvist, H., E. Berge, and J.E. Kristjansson. 1989. Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Monthly Weather Review 117: 1641–1657.CrossRefGoogle Scholar
  27. Walters, D., I. Boutle, M. Brooks, T. Melvin, R. Stratton, S. Vosper, H. Wells, K. Williams, N. Wood, T. Allen, A. Bushell, D. Copsey, P. Earnshaw, J. Edwards, M. Gross, S. Hardiman, C. Harris, J. Heming, N. Klingaman, R. Levine, J. Manners, G. Martin, S. Milton, M. Mittermaier, C. Morcrette, T. Riddick, M. Roberts, C. Sanchez, P. Selwood, A. Stirling, C. Smith, D. Suri, W. Tennant, P.L. Vidale, J. Wilkinson, M. Willett, S. Woolnough, and P. Xavier. 2017. The Met Office Unified Model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geoscientific Model Development 10: 1487–1520. Scholar
  28. Wang, X., and C.H. Bishop. 2003. A comparison of breeding and ensemble transform Kalman Filter ensemble forecast schemes. Journal of the Atmospheric Sciences 60: 1140–1157.CrossRefGoogle Scholar
  29. Wilson, D.R. and S.P. Ballard. 1999. A microphysically based precipitation scheme for the UK meteorological office unified model. Quarterly Journal of the Royal Meteorological Society 125: 1607–1636.CrossRefGoogle Scholar
  30. Williams, K.D., and coauthors. 2015. The Met Office Global Coupled model 2.0 (GC2) configuration. Geoscientific Model Development 8: 1509–1524.CrossRefGoogle Scholar
  31. Wood, N., A. Staniforth, A. White, T. Allen, M. Diamantakis, M. Gross, T. Melvin, C. Smith, S. Vosper, M. Zerroukat, and J. Thuburn. 2014. An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quarterly Journal of the Royal Meteorological Society 140: 1505–1520.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • E. N. Rajagopal
    • 1
    Email author
  • A. K. Mitra
    • 1
  • Munmun Das Gupta
    • 1
  • John P. George
    • 1
  • Raghavendra Ashrit
    • 1
  • Abhijit Sarkar
    • 1
  • A. Jayakumar
    • 1
  1. 1.National Centre for Medium Range Weather ForecastingNoidaIndia

Personalised recommendations