Advertisement

Difficulties in the Subgrid-Scale Redistribution of Moisture of a Global Cloud-Resolving Model

  • Hiroaki MiuraEmail author
Chapter
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

More than one decade has passed since the first global cloud-resolving simulation was achieved under an aquaplanet condition in 2005. While such high-resolution global simulations have been beneficial not only to advance our knowledge of organized cloud systems but also to give various hints on improvements of traditional global models that depend on a kind of cumulus parameterization, explicit computations of cloud microphysics cannot necessarily ensure realistic representations of clouds and climate. A direct coupling between fluid dynamics and cloud processes is a strong point of the global cloud-resolving approach, but there still remain various rooms of uncertainties. Here, we briefly summarize successful and unsuccessful results of global or near-global simulations with explicit cloud microphysics and discuss a difficulty in the subgrid-scale redistribution of moisture.

Keywords

Global cloud-resolving model Subgrid-scale processes Moisture 

References

  1. Dodson, J.B., D.A. Randall, and K. Suzuki. 2013. Comparison of observed and simulated tropical cumuliform clouds by CloudSat and NICAM. Journal of Geophysical Research Atmospheres 118: 1852–1867.  https://doi.org/10.1002/jgrd.50121.CrossRefGoogle Scholar
  2. Gottschalck, J., P.E. Roundy, C.J. Schreck III, A. Vintzileos, and C. Zhang. 2013. Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Monthly Weather Review 141: 4173–4196.  https://doi.org/10.1175/MWR-D-13-00022.1.CrossRefGoogle Scholar
  3. Grabowski, W.W. 1998. Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. Journal of the Atmospheric Sciences 55: 3283–3298.  https://doi.org/10.1175/1520-0469(1998)055%3c3283:TCRMOL%3e2.0.CO;2.CrossRefGoogle Scholar
  4. Grabowski, W.W. 2001. Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). Journal of the Atmospheric Sciences 58: 978–997.  https://doi.org/10.1175/1520-0469(2001)058%3c0978:CCPWTL%3e2.0.CO;2.CrossRefGoogle Scholar
  5. Hashino, T., M. Satoh, Y. Hagihara, T. Kubota, T. Matsui, T. Nasuno, and H. Okamoto. 2013. Evaluating cloud microphysics from NICAM against CloudSat and CALIPSO. Journal of Geophysical Research Atmospheres 118: 7273–7292.  https://doi.org/10.1002/jgrd.50564.CrossRefGoogle Scholar
  6. Holloway, C.E., S.J. Woolnough, and G.M.S. Lister. 2013. The effects of explicit versus parameterized convection on the MJO in a large-domain high-resolution tropical case study. Part I: Characterization of large-scale organization and propagation*. Journal of the Atmospheric Sciences 70: 1342–1369.  https://doi.org/10.1175/JAS-D-12-0227.1.CrossRefGoogle Scholar
  7. Inoue, T., M. Satoh, Y. Hagihara, H. Miura, and J. Schmetz. 2010. Comparison of high-level clouds represented in a global cloud system–resolving model with CALIPSO/CloudSat and geostationary satellite observations. Journal of Geophysical Research 115: D00H22.  https://doi.org/10.1029/2009jd012371.
  8. Khairoutdinov, M.F., and D.A. Randall. 2001. A cloud resolving model as a cloud parameterization in the NCAR community climate system model: Preliminary results. Geophysical Reseach Letters 28: 3617–3620.  https://doi.org/10.1029/2001GL013552.CrossRefGoogle Scholar
  9. Kinter, J.L., and Coauthors. 2013. Revolutionizing climate modeling with project Athena: A multi-institutional, international collaboration. Bulletin of the American Meteorological Society 94: 231–245.  https://doi.org/10.1175/BAMS-D-11-00043.1.CrossRefGoogle Scholar
  10. Klingaman, N.P., X. Jiang, P.K. Xavier, J. Petch, D. Waliser, and S.J. Woolnough. 2015. Vertical structure and physical processes of the Madden-Julian oscillation: Synthesis and summary. Journal of Geophysical Research Atmospheres 120: 4671–4689.  https://doi.org/10.1002/2015JD023196.CrossRefGoogle Scholar
  11. Liu, P., and Coauthors. 2009. An MJO simulated by the NICAM at 14- and 7-km resolutions. Monthly Weather Review 137: 3254–3268.  https://doi.org/10.1175/2009MWR2965.1.CrossRefGoogle Scholar
  12. Masunaga, H., M. Satoh, and H. Miura. 2008. A joint satellite and global cloud-resolving model analysis of a Madden-Julian Oscillation event: Model diagnosis. Journal Geophysical Research 113: D17210.  https://doi.org/10.1029/2008JD009986.CrossRefGoogle Scholar
  13. Miura, H., M. Satoh, T. Nasuno, A.T. Noda, and K. Oouchi. 2007a. A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model. Science 318: 1763–1765.  https://doi.org/10.1126/science.1148443.CrossRefGoogle Scholar
  14. Miura, H., M. Satoh, H. Tomita, A.T. Noda, T. Nasuno, and S. Iga. 2007b. A short-duration global cloud-resolving simulation with a realistic land and sea distribution. Geophysical Reseach Letters 34: L02804.  https://doi.org/10.1029/2006GL027448.CrossRefGoogle Scholar
  15. Miura, H., T. Miyakawa, T. Nasuno, and M. Satoh. 2012. Simulations of the MJO events during the field campaign of 2011–12 by a global cloud-resolving model NICAM, Abstract A13O-03 presented at 2012 Fall Meeting, AGU, San Francisco, California, 3–7 Dec.Google Scholar
  16. Miura, H., M. Satoh, H. Tomita, A.T. Noda, T. Nasuno, S. Iga, T. Suematsu, and T. Nasuno. 2015. An ensemble hindcast of the Madden-Julian oscillation during the CINDY2011/DYNAMO field campaign and influence of seasonal variation of sea surface temperature. Journal of the Meteorological Society of Japan Series II 93A: 115–137.  https://doi.org/10.2151/jmsj.2015-055.CrossRefGoogle Scholar
  17. Miyakawa, T., and Coauthors. 2014. Madden–Julian oscillation prediction skill of a new-generation global model demonstrated using a supercomputer. Nature Communications 5: 3769.  https://doi.org/10.1038/ncomms4769.
  18. Miyamoto, Y., Y. Kajikawa, R. Yoshida, T. Yamaura, H. Yashiro, and H. Tomita. 2013. Deep moist atmospheric convection in a subkilometer global simulation. Geophysical Reseach Letters 40: 4922–4926.  https://doi.org/10.1002/grl.50944.CrossRefGoogle Scholar
  19. Pilon, R., C. Zhang, and J. Dudhia. 2016. Roles of deep and shallow convection and microphysics in the MJO simulated by the model for prediction across scales. Journal of Geophysical Research 121: 10575–10600.  https://doi.org/10.1002/2015JD024697.CrossRefGoogle Scholar
  20. Randall, D.A. 2013. Beyond deadlock. Geophysical Reseach Letters 40: 5970–5976.  https://doi.org/10.1002/2013GL057998.CrossRefGoogle Scholar
  21. Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski. 2003. Breaking the cloud parameterization deadlock. Bulletin of the American Meteorological Society 84: 1547–1564.  https://doi.org/10.1175/BAMS-84-11-1547.CrossRefGoogle Scholar
  22. Reynolds, R.W., N.A. Rayner, T.M. Smith, D.C. Stokes, and W. Wang. 2002. An improved in situ and satellite SST analysis for climate. Journal of Climate 15: 1609–1625.  https://doi.org/10.1175/1520-0442(2002)015%3c1609:AIISAS%3e2.0.CO;2.CrossRefGoogle Scholar
  23. Roh, W., M. Satoh, and T. Nasuno. 2017. Improvement of a cloud microphysics scheme for a global nonhydrostatic model using TRMM and a satellite simulator. Journal of the Atmospheric Sciences 74: 167–184.  https://doi.org/10.1175/JAS-D-16-0027.1.CrossRefGoogle Scholar
  24. Saito, K., T. Keenan, G. Holland, and K. Puri, 2001: Numerical simulation of the diurnal evolution of tropical Island convection over the maritime continent. Monthly Weather Review 129, 378–400. https://doi.org/10.1175/1520-0493 129<037 8:NSOTDE>2.0.CO;2.
  25. Sasaki, W., R. Onishi, H. Fuchigami, K. Goto, S. Nishikawa, Y. Ishikawa, and K. Takahashi. 2016. MJO simulation in a cloud-system-resolving global ocean-atmosphere coupled model. Geophysical Reseach Letters 43: 9352–9360.  https://doi.org/10.1002/2016GL070550.CrossRefGoogle Scholar
  26. Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga. 2008. Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. Journal of Computational Physics 227: 3486–3514.  https://doi.org/10.1016/j.jcp.2007.02.006.CrossRefGoogle Scholar
  27. Satoh, M., S. Iga, H. Tomita, Y. Tsushima, and A.T. Noda. 2012. Response of upper clouds in global warming experiments obtained using a global nonhydrostatic model with explicit cloud processes. Journal of Climate 25: 2178–2191.  https://doi.org/10.1175/JCLI-D-11-00152.1.CrossRefGoogle Scholar
  28. Satoh, M., S. Iga, H. Tomita, Y. Tsushima, A.T. Noda, and Coauthors. 2014. The non-hydrostatic icosahedral atmospheric model: Description and development. Progress in Earth and Planetary Science 1: 18.  https://doi.org/10.1186/s40645-014-0018-1.CrossRefGoogle Scholar
  29. Seiki, T., C. Kodama, A.T. Noda, and M. Satoh. 2015. Improvement in global cloud-system-resolving simulations by using a double-moment bulk cloud microphysics scheme. Journal of Climate 28: 2405–2419.  https://doi.org/10.1175/JCLI-D-14-00241.1.CrossRefGoogle Scholar
  30. Skamarock, W.C., and Coauthors. 2008. A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475 + STR, 125 pp.Google Scholar
  31. Skamarock, W.C., J.B. Klemp, M.G. Duda, L.D. Fowler, S.-H. Park, and T.D. Ringler. 2012. A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Monthly Weather Review 140: 3090–3105.  https://doi.org/10.1175/MWR-D-11-00215.1.CrossRefGoogle Scholar
  32. Tomita, H. 2008. New microphysical schemes with five and six categories by diagnostic generation of cloud ice. Journal of the Meteorological Society of Japan 86A: 121–142.  https://doi.org/10.2151/jmsj.86A.121.CrossRefGoogle Scholar
  33. Tomita, H., M. Tsugawa, M. Satoh, and K. Goto, 2001: Shallow water model on a modified icosahedral geodesic grid by using spring dynamics. Journal of Computational Physics 174: 579–613.  https://doi.org/10.1006/JCPH.2001.6897.CrossRefGoogle Scholar
  34. Tomita, H., H. Miura, S. Iga, T. Nasuno, and M. Satoh. 2005. A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophysical Reseach Letters 32: 1–4.  https://doi.org/10.1029/2005GL022459.
  35. Tsushima, Y., S. Iga, H. Tomita, M. Satoh, A.T. Noda, and M.J. Webb. 2014. High cloud increase in a perturbed SST experiment with a global nonhydrostatic model including explicit convective processes. Journal of Advances in Modeling Earth Systems 6: 571–585.  https://doi.org/10.1002/2013MS000301.CrossRefGoogle Scholar
  36. Ulate, M., C. Zhang, and J. Dudhia. 2015. Role of water vapor and convection-circulation decoupling in MJO simulations by a tropical channel model. Journal of Advances in Modeling Earth Systems 7: 692–711.  https://doi.org/10.1002/2014MS000393.CrossRefGoogle Scholar
  37. Wang, S., A.H. Sobel, F. Zhang, Y.Q. Sun, Y. Yue, and L. Zhou. 2015. Regional simulation of the October and November MJO events observed during the CINDY/DYNAMO field campaign at gray zone resolution. Journal of Climate 28: 2097–2119.  https://doi.org/10.1175/JCLI-D-14-00294.1.CrossRefGoogle Scholar
  38. Watanabe, S., T. Hajima, K. Sudo, T. Nagashima, T. Takemura, H. Okajima, T. Nozawa, H. Kawase, M. Abe, T. Yokohata, T. Ise, H. Sato, E. Kato, K. Takata, S. Emori, and M. Kawamiya. 2011. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development 4: 845–872. https://doi.org/10.5194/gmd-4-845-2011.
  39. Xu, K., R.T. Cederwall, L.J. Donner, W.W. Grabowski, F. Guichard, D.E. Johnson, M. Khairoutdinov, S.K. Krueger, J. C. Petch, D. A. Randall, C. J. Seman, W. Tao, D. Wang, S. Cheng Xie, J.J. Yio, and M. Zhang. 2002. An intercomparison of cloud‐resolving models with the atmospheric radiation measurement summer 1997 intensive observation period data. Quarterly Journal of the Royal Meteorological Society 128: 593–624. https://doi.org/10.1256/003590002321042117.CrossRefGoogle Scholar
  40. Yoneyama, K., C. Zhang, and C.N. Long. 2013. Tracking pulses of the Madden–Julian oscillation. Bulletin of the American Meteorological Society 94: 1871–1891.  https://doi.org/10.1175/BAMS-D-12-00157.1.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Earth and Planetary Science, Graduate School of ScienceThe University of TokyoBunkyo-kuJapan

Personalised recommendations