Advertisement

A Modified Firefly Swarm Optimization Technique to Improve the Efficiency of Underwater Wireless Sensor Networks

  • A. M. Viswa Bharathy
  • V. ChandrasekarEmail author
  • D. Sujatha
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 898)

Abstract

The sensor nodes in UWSNs do not remain within the confined zone due to water currents. The sensor nodes have to be clustered in order to enable them to send and receive the collected data in their deployed environment. Clustering of sensor nodes helps the network in reducing transmission time. A grouping algorithm derived from the firefly swarm optimization (FSO) is tested to improve the stability and proximity of the underwater wireless sensor networks (UWSNs). The firefly algorithm helps in keeping the sensor nodes intact and produces fewer failures in network connectivity. The simulation results are convincing, and the same has been given at the end.

Keywords

Clustering Firefly Stability Sensor networks Optimization 

References

  1. 1.
    Salehian, S., Subraminiam, S.K.: Unequal clustering by improved particle swarm optimization (IPSO) in wireless sensor network. In: The 2015 International Conference on Soft Computing and Software Engineering (SCSE 2015). Procedia Comput. Sci. 62, 403–409Google Scholar
  2. 2.
    Ouchitachen, H., Hair, A., Idrissi, N.: Improved multi-objective weighted clustering algorithm in wireless sensor network. Egypt. Inform. J. http://dx.doi.org/10.1016/j.eij.2016.06.001
  3. 3.
    Amine, D., Nasr-Eddine, B., Abdelhamid, L.: A distributed and safe weighted clustering algorithm for mobile wireless sensor networks. Procedia Comput. Sci. 52, 641–646 (2015)CrossRefGoogle Scholar
  4. 4.
    Gupta, V., Pandey, R.: An improved energy aware distributed unequal clustering protocol for heterogeneous wireless sensor networks. Eng. Sci. Technol. Int. J. 19, 1050–1058 (2016)CrossRefGoogle Scholar
  5. 5.
    Perrig, A., Szewczyk, R., Wen, V., Culler, D.E., Tygar, J.D.: SPINS: security protocols for sensor networks. Wirel. Netw. 8(5), 521–534 (2002)CrossRefGoogle Scholar
  6. 6.
    Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D.E., Pister, K.: System architecture directions for networked sensors. In: Proceedings of the 9th International Conference on Architectural Support for Programming Languages and Operating Systems. ACM Press, New York, pp. 93–104 (2000)Google Scholar
  7. 7.
    Carman, D.W., Krus, P.S., Matt, B.J.: Constraints and approaches for distributed sensor network security. Technical Report 00-010, NAI Labs, Network Associates Inc., Glenwood, MD (2000)Google Scholar
  8. 8.
    Mahajan, S., Malhotra, J., Sharma, S.: An energy balanced QoS based cluster head selection strategy for WSN. Egypt. Inform. J. 15, 189–199 (2014)CrossRefGoogle Scholar
  9. 9.
    Viswa Bharathy, A.M., Basha, A.M.: A multi-class classification MCLP model with particle swarm optimization for network intrusion detection. In: Sadhana: Academy Proceedings in Engineering Science, vol. 42, no. 5, pp. 631–640 (2017)Google Scholar
  10. 10.
    Viswa Bharathy, A.M., Basha, A.M.: A hybrid intrusion detection system cascading support vector machine and fuzzy logic. World Appl. Sci. J. 35(1), 104–109 (2016)Google Scholar
  11. 11.
    Viswa Bharathy, A.M., Basha, A.M.: A hybrid network intrusion detection technique using variable multiplicative K-means with self-organising PSO. Middle East J. Sci. Res. 24(12), 3812–3819 (2016)Google Scholar
  12. 12.
    Kingsly, S.R., Viswa Bharathy, A.M.: Secure neighbor discovery scheme for dynamic clustering in manet. Int. J. Sci. Eng. Res. 3(4) (2015)Google Scholar
  13. 13.
    Sen, J.: A survey on wireless sensor network security. Int. J. Commun. Netw. Inf. Secur. (IJCNIS) 1(2), 55–78 (2009)Google Scholar
  14. 14.
    Gowrishankar, S., Basavaraju, T.G., Manjaiah, D.H., Sarkar, S.K.: Issues in wireless sensor networks. In: Proceedings of the World Congress on Engineering 2008, vol IGoogle Scholar
  15. 15.
    Bakr, B.A., Lilien, L.T.: Extending lifetime of wireless sensor networks by management of spare nodes. Procedia Comput. Sci. 34, 493–498 (2014)CrossRefGoogle Scholar
  16. 16.
    Sengupta, D., Roy, A.: A literature survey of topology control and its related issues in wireless sensor networks. Int. J. Inf. Technol. Comput. Sci. 10, 19–27 (2014)CrossRefGoogle Scholar
  17. 17.
    Taherian, M., Karimi, H., Kashkooli, A.M., Esfahanimehr, A., Jafta, T., Jafarabad, M.: The design of an optimal and secure routing model in wireless sensor networks by using PSO algorithm. Procedia Comput. Sci. 73, 468–473 (2015)CrossRefGoogle Scholar
  18. 18.
    Gherbi, C., Aliouat, Z., Benmohammed, M.: A load-balancing and self-adaptation clustering for lifetime prolonging in large scale wireless sensor networks. Procedia Comput. Sci. 73, 66–75 (2015)CrossRefGoogle Scholar
  19. 19.
    Krishna, K.H., Babu, Y.S., Kumar, T.: Wireless sensor network topology control using clustering. Procedia Comput. Sci. 79, 893–902 (2016)CrossRefGoogle Scholar
  20. 20.
    Fan, Z., Jin, Z.: A multi-weight based clustering algorithm for wireless sensor network. PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review). ISSN 0033-2097, R. 88 NR 1b/2012, 19–21Google Scholar
  21. 21.
    Abo-Zahhad, M., Ahmed, S.M., Sabor, N., Sasaki, S.: A new energy-efficient adaptive clustering protocol based on genetic algorithm for improving the lifetime and the stable period of wireless sensor networks. Int. J. Energy Inf. Commun. 5(3), 47–72 (2014)Google Scholar
  22. 22.
    Gajjar, S., Sarkar, M., Dasgupta, K.: FAMACRO: fuzzy and ant colony optimization based MAC/routing cross-layer protocol for wireless sensor networks. Procedia Comput. Sci. 46, 1014–1021 (2015)CrossRefGoogle Scholar
  23. 23.
    Ren, Z., Chen, Y., Yao, Y., Li, Q.: Energy-efficient ring-based multi-hop clustering routing for WSNs. In: IEEE Fifth International Symposium on Computational Intelligence and Design, pp. 14–17 (2012)Google Scholar
  24. 24.
    Krishna, H., Babu, Y.S., Kumar, T.: Wireless sensor network topology control using clustering. Procedia Comput. Sci. 79, 893–902 (2016)CrossRefGoogle Scholar
  25. 25.
    Amine, D., Nassreddine, B., Bouabdellah, K.: Energy efficient and safe weighted clustering algorithm for mobile wireless sensor networks. In: The 9th International Conference on Future Networks and Communications (FNC 2014). Procedia Comput. Sci. 34, 63–70CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • A. M. Viswa Bharathy
    • 1
  • V. Chandrasekar
    • 2
    Email author
  • D. Sujatha
    • 2
  1. 1.Department of CSEJyothishmathi Institute of Technology and ScienceKarimnagarIndia
  2. 2.Department of CSEMalla Reddy College of Engineering and TechnologyHyderabadIndia

Personalised recommendations