Advertisement

Sepsis

  • Swagata Tripathy
Chapter

Abstract

Sepsis results from microbial invasion of sterile areas of the body. The manifestations can be diverse leading to diagnostic dilemmas. More than one-third of neurosurgical patients in the neurointensive care units (ICU) are diagnosed with sepsis; the common infections are pneumonia, urinary tract, blood stream, and intracranial infections. A dysregulated immune response involving the hypothalamo-pituitary axis and the sympathetic nervous system follows trauma to the brain tissue. This phenomenon referred to as “brain injury induced immunosuppression syndrome” results in increased susceptibility to infections. Among measures to prevent infection, noninvasive ventilation and early separation from the ventilator along with screening for swallowing difficulties have proven to be of benefit: prophylactic antibiotics and oral decontamination have not. Treatment of sepsis in patients in the neuro-ICU follows the similar principles as in all septic patients, with emphasis on early recognition and quick intervention, fluid resuscitation, and antibiotics tailored to the organism causing the infection.

Keywords

Dysregulated immune response Sepsis Septic shock Intracranial infection EVD-related infection Healthcare-associated ventriculitis and meningitis Early treatment 

References

  1. 1.
    American College of Chest Physicians/Society of Critical Care Medicine. American College of Chest Physicians/Society of Critical Care Medicine consensus conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864–74.CrossRefGoogle Scholar
  2. 2.
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med. 2003;31:1250–6.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Lever A, Mackenzie I. Sepsis: definition, epidemiology, and diagnosis. BMJ. 2007;335(7625):879–83.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Genga KR, Russell JA. Update of sepsis in the intensive care unit. J Innate Immun. 2017;9:441–55.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Perner A, Gordon AC, De Backer D, et al. Sepsis: frontiers in diagnosis, resuscitation and antibiotic therapy. Intensive Care Med. 2016;42:1958–69.PubMedCrossRefGoogle Scholar
  7. 7.
    Chang DW, Tseng CH, Shapiro MF. Rehospitalizations following sepsis: common and costly. Crit Care Med. 2015;43:2085–93.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Donnelly JP, Hohmann SF, Wang HE. Unplanned readmissions after hospitalization for severe sepsis at academic medical center-affiliated hospitals. Crit Care Med. 2015;43:1916–27.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Goodwin AJ, Rice DA, Simpson KN, Ford DW. Frequency, cost, and risk factors of readmissions among severe sepsis survivors. Crit Care Med. 2015;43:738–46.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kissoon N, Daniels R, van der Poll T, Finfer S, Reinhart K. Sepsis - the final common pathway to death from multiple organ failure in infection. Crit Care Med. 2016;44:e446.PubMedCrossRefGoogle Scholar
  11. 11.
    Shankar-Hari M, Harrison DA, Rubenfeld GD, Rowan K. Epidemiology of sepsis and septic shock in critical care units: comparison between sepsis-2 and sepsis-3 populations using a national critical care database. Br J Anaesth. 2017;119(4):626–36.PubMedCrossRefGoogle Scholar
  12. 12.
    Laborde G, Grosskopf U, Schmieder K, et al. Nosocomial infections in a neuro-surgical intensive care unit. Anaesthesist. 1993;42(10):724–31.PubMedGoogle Scholar
  13. 13.
    Dettenkofer M, Ebner W, Hans FJ, et al. Nosocomial infections in a neurosurgery intensive care unit. Acta Neurochir. 1999;141(12):1303–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Reinhart K, Menges T, Gardlund B, Harm Zwaveling J, Smithes M, Vincent JL, et al. Randomized, placebo-controlled trial of the anti-tumor necrosis factor antibody fragment afelimomab in hyperinflammatory response during severe sepsis: the RAMSES Study. Crit Care Med. 2001;29:765–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Abraham E, PF Laterre J, Garbino S, Pingleton T, Butler TD, et al. Lenercept (p55 tumor necrosis factor receptor fusion protein) in severe sepsis and early septic shock: a randomized, double-blind, placebo-controlled, multicenter phase III trial with 1,342 patients. Crit Care Med. 2001;29:503–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Panacek EA, Marshall JC, Albertson TE, Johnson DH, Johnson S, MacArthur RD. Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F(ab′)2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levels. Crit Care Med. 2004;32:2173–82.PubMedCrossRefGoogle Scholar
  17. 17.
    Marshall C. Such stuff as dreams are made on: mediator-directed therapy in sepsis. Nat Rev Drug Discov. 2003;2:391–405.PubMedCrossRefGoogle Scholar
  18. 18.
    Heagy W, Hansen C, Nieman K, Cohen M, Richardson C, Rodriguez JL, et al. Impaired ex vivo lipopolysaccharide-stimulated whole blood tumor necrosis factor production may identify “septic” intensive care unit patients. Shock. 2000;14:271–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Heagy W, Nieman K, Hansen C, Cohen M, Danielson D, West MA. Lower levels of whole blood LPS-stimulated cytokine release are associated with poorer clinical outcomes in surgical ICU patients. Surg Infect. 2003;4:171–80.CrossRefGoogle Scholar
  20. 20.
    Root RK, Lodato RF, Patrick W, JF Cade N, Fotheringham SM, Vincent JL, et al. Multicenter, double-blind, placebo-controlled study of the use of filgrastim in patients hospitalized with pneumonia and severe sepsis. Crit Care Med. 2003;31:367–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med. 1996;24:1125–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Van den Berghe G. How does blood glucose control with insulin save lives in intensive care? J Clin Invest. 2004;114:1187–95.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Langouche L, Vanhorebeek I, Vlasselaers D, Vander Perre S, Wouters PJ, Skogstrand K, et al. Intensive insulin therapy protects the endothelium of critically ill patients. J Clin Invest. 2005;115:2277–86.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Remick DG. Pathophysiology of Sepsis. Am J Pathol. 2007;170(5):1435–44.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chamorro A, Urra X, Planas AM. Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke. 2007;38(3):1097–103.PubMedCrossRefGoogle Scholar
  26. 26.
    Offner H, Subramanian S, Parker SM, et al. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab. 2006;26(5):654–65.PubMedCrossRefGoogle Scholar
  27. 27.
    Prüss H, Tedeschi A, Thiriot A, Lynch L, Loughhead SM, Stutte S, et al. Spinal cord injury-induced immunodeficiency is mediated by a sympathetic-neuroendocrine adrenal reflex. Nat Neurosci. 2017;20:1549–59.PubMedCrossRefGoogle Scholar
  28. 28.
    Chamorro A, Amaro S, Vargas M, et al. Catecholamines, infection, and death in acute ischemic stroke. J Neurol Sci. 2007;252(1):29–35.PubMedCrossRefGoogle Scholar
  29. 29.
    Urra X, Laredo C, Zhao Y, Amaro S, Rudilosso S, Renú A, et al. Neuroanatomical correlates of stroke-associated infection and stroke-induced immunodepression. Brain Behav Immun. 2017;60:142–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Walter U, Kolbaske S, Patejdl R, et al. Insular stroke is associated with acute sympathetic hyperactivation and immunodepression. Eur J Neurol. 2013;20:153–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Sykora M, Diedler J, Poli S, et al. Autonomic shift and increased susceptibility to infections after acute intracerebral hemorrhage. Stroke. 2011;42(5):1218–23.PubMedCrossRefGoogle Scholar
  32. 32.
    Yperzeele L, van Hooff RJ, Nagels G, De Smedt A, De Keyser J, Brouns R. Heart rate variability and baroreceptor sensitivity in acute stroke: a systematic review. Int J Stroke. 2015;10(6):796–800.PubMedCrossRefGoogle Scholar
  33. 33.
    Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of healthcare-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Kourbeti IS, Vakis AF, Ziakas P, et al. Infections in patients undergoing craniotomy: risk factors associated with post-craniotomy meningitis. J Neurosurg. 2015;122(5):1113–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Arabi Y, Memish ZA, Balkhy HH, et al. Ventriculostomy-associated infections: incidence and risk factors. Am J Infect Control. 2005;33(3):137–43.PubMedCrossRefGoogle Scholar
  36. 36.
    Bhimraj A. Acute community-acquired bacterial meningitis in adults: an evidence-based review. Cleve Clin J Med. 2012;79(6):393–400.PubMedCrossRefGoogle Scholar
  37. 37.
    Chen C, Zhang B, Yu S, et al. The incidence and risk factors of meningitis after major craniotomy in China: a retrospective cohort study. PLoS One. 2014;9(7):e101961.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hernández Ortiz OH, García García HI, Muñoz Ramírez F, Cardona Flórez JS, Gil Valencia BA, Medina Mantilla SE, Moreno Ochoa MJ, Sará Ochoa JE, Jaimes F. Development of a prediction rule for diagnosing postoperative meningitis: a cross-sectional study. J Neurosurg. 2018;128(1):262–71.PubMedCrossRefGoogle Scholar
  39. 39.
    Lozier AP, Sciacca RR, Romagnoli MF, et al. Ventriculostomy-related infections: a critical review of the literature. Neurosurgery. 2002;51(1):170–81; discussion: 181–2.PubMedCrossRefGoogle Scholar
  40. 40.
    Tunkel AR, Hasbun R, Bhimraj A, Byers K, Kaplan SL, Michael Scheld W, et al. 2017 Infectious Diseases Society of America’s clinical practice guidelines for healthcare-associated ventriculitis and meningitis. Clin Infect Dis. 2017;64(6):e34–65.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Chauv S, Fontaine GV, Hoang QP, McKinney CB, Baldwin M, Buckel WR, Collingridge DS, Majercik S, Wohlt PD. Risk of resistant organisms and clostridium difficile with prolonged systemic antibiotic prophylaxis for central nervous system devices. Neurocrit Care. 2016;25(1):128–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Dellit TH, Chan JD, Fulton C, et al. Reduction in Clostridium difficile infections among neurosurgical patients associated with discontinuation of antimicrobial prophylaxis for the duration of external ventricular drain placement. Infect Control Hosp Epidemiol. 2014;35(5):589–90.PubMedCrossRefGoogle Scholar
  43. 43.
    Kourbeti IS, Vakis AF, Papadakis JA, Karabetsos DA, Bertsias G, Filippou M, et al. Infections in traumatic brain injury patients. Clin Microbiol Infect. 2012;18(4):359–64.PubMedCrossRefGoogle Scholar
  44. 44.
    WartenbergKE MSA. Medical complications after subarachnoid hemorrhage. Neurosurg Clin N Am. 2010;21(2):325–38.CrossRefGoogle Scholar
  45. 45.
    Zelano J, Möller F, Dobesberger J, Trinka E, Kumlien E. Infections in status epilepticus: a retrospective 5-year cohort study. Seizure. 2014;23(8):603–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Zygun DA, Zuege DJ, Boiteau PJ, Laupland KB, Henderson EA, Kortbeek JB, et al. Ventilator-associated pneumonia in severe traumatic brain injury. Neurocrit Care. 2006;5(2):108–14.PubMedCrossRefGoogle Scholar
  47. 47.
    Kesinger MR, Kumar RG, Wagner AK, et al. Hospital-acquired pneumonia is an independent predictor of poor global outcome in severe traumatic brain injury up to 5 years after discharge. J Trauma Acute Care Surg. 2015;78(2):396–402.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Jovanovic B, Milan Z, Markovic-Denic L, et al. Risk factors for ventilator-associated pneumonia in patients with severe traumatic brain injury in a Serbian trauma centre. Int J Infect Dis. 2015;38:46–51.PubMedCrossRefGoogle Scholar
  49. 49.
    Dasenbrock HH, Rudy RF, Smith TR, Guttieres D, Frerichs KU, Gormley WB, Aziz-Sultan MA, Du R. Hospital-acquired infections after aneurysmal subarachnoid hemorrhage: a nationwide analysis. World Neurosurg. 2016;88:459–74.PubMedCrossRefGoogle Scholar
  50. 50.
    Tan C-H, Nair P, Sule A, Rathbone M. A review of central venous catheter-related infections in neurointensive care patients in a tertiary referral centre. Crit Care. 2009;13(Suppl 4):P17.PubMedCentralCrossRefGoogle Scholar
  51. 51.
    Mehndiratta MM, Nayak R, Ali S, Sharma A. Bloodstream infections in NNICU: blight on ICU stay. Ann Indian Acad Neurol. 2016;19:327–31.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Abu Hamdeh S, Lytsy B, Ronne-Engström E. Surgical site infections in standard neurosurgery procedures- a study of incidence, impact and potential risk factors. Br J Neurosurg. 2014;28(2):270–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Lietard C, Thébaud V, Besson G, Lejeune B. Risk factors for neurosurgical site infections: an 18-month prospective survey. J Neurosurg. 2008;109(4):729–34.PubMedCrossRefGoogle Scholar
  54. 54.
    Fei Q, Li J, Lin J, Li D, Wang B, Meng H, Wang Q, Su N, Yang Y. Risk factors for surgical site infection after spinal surgery: a meta-analysis. World Neurosurg. 2016;95:507–15.PubMedCrossRefGoogle Scholar
  55. 55.
    Sebastian A, Huddleston P, Kakar S, Habermann E, Wagie A, Nassr A. Risk factors for surgical site infection after posterior cervical spine surgery: an analysis of 5,441 patients from the ACS NSQIP 2005–2012. Spine J. 2016;16(4):504–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Musa SA, Robertshaw H, Thomson SJ, et al. Clostridium difficile-associated disease acquired in the neurocritical care unit. Neurocrit Care. 2010;13(1):87–92.PubMedCrossRefGoogle Scholar
  57. 57.
    Tripathy S, Nair P, Rothburn M. Clostridium difficile associated disease in a Neurointensive Care Unit. Front Neurol. 2013;4:82.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    van de Beek D, Wijdicks EF, Vermeij FH, et al. Preventive antibiotics for infections in acute stroke: a systematic review and meta-analysis. Arch Neurol. 2009;66(9):1076–81.PubMedGoogle Scholar
  59. 59.
    Seguin P, Laviolle B, Dahyot-Fizelier C, et al. Effect of oropharyngeal povidone- iodine preventive oral care on ventilator-associated pneumonia in severely brain-injured or cerebral hemorrhage patients: a multicenter, randomized controlled trial. Crit Care Med. 2014;42(1):1–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Klompas M. Oropharyngeal decontamination with antiseptics to prevent ventilator-associated pneumonia: rethinking the benefits of chlorhexidine. Semin Respir Crit Care Med. 2017;38(3):381–90.PubMedCrossRefGoogle Scholar
  61. 61.
    Titsworth WL, Abram J, Fullerton A, et al. Prospective quality initiative to maximize dysphagia screening reduces hospital-acquired pneumonia prevalence in patients with stroke. Stroke. 2013;44(11):3154–60.PubMedCrossRefGoogle Scholar
  62. 62.
    Timsit J-F, Esaied W, Neuville M, Bouadma L, Mourvillier B. Update on ventilator-associated pneumonia. F1000Res. 2017;6:2061.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45:486–552.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, et al. Beta-lactam infusion in severe sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016;42:1535–45.PubMedCrossRefGoogle Scholar
  65. 65.
    Dulhunty JM, Roberts JA, Davis JS, et al. A multicenter randomized trial of continuous versus intermittent β-lactam infusion in severe sepsis. Am J Respir Crit Care Med. 2015;192:1298–305.PubMedCrossRefGoogle Scholar
  66. 66.
    de Jong E, van Oers JA, Beishuizen A, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016;16:819–27.PubMedCrossRefGoogle Scholar
  67. 67.
    Silversides JA, Major E, Ferguson AJ, et al. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med. 2017;43:155–70.PubMedCrossRefGoogle Scholar
  68. 68.
    Caironi P, Tognoni G, Masson S, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370:1412–21.PubMedCrossRefGoogle Scholar
  69. 69.
    Gamper G, Havel C, Arrich J, et al. Vasopressors for hypotensive shock. Cochrane Database Syst Rev. 2016;2:CD003709.PubMedGoogle Scholar
  70. 70.
    Keh D, Trips E, Marx G, et al. Effect of hydrocortisone on development of shock among patients with severe sepsis: the HYPRESS randomized clinical trial. JAMA. 2016;316:1775–85.PubMedCrossRefGoogle Scholar
  71. 71.
    Kruger PS, Terblanche M. Statins in patients with sepsis and ARDS: is it over? No. Intensive Care Med. 2017;43:675–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Hernandez G, Vaquero C, Gonzalez P, et al. Effect of postextubation high-flow nasal cannula vs conventional oxygen therapy on reintubation in low-risk patients: a randomized clinical trial. JAMA. 2016;315:1354–61.PubMedCrossRefGoogle Scholar
  73. 73.
    Hernandez G, Vaquero C, Colinas L, et al. Effect of postextubation high-flow nasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients: a randomized clinical trial. JAMA. 2016;316:1565–74.PubMedCrossRefGoogle Scholar
  74. 74.
    Girardis M, Busani S, Damiani E, et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the Oxygen-ICU Randomized Clinical Trial. JAMA. 2016;316:1583–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Gaudry S, Hajage D, Schortgen F, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. 2016;375:122–33.PubMedCrossRefGoogle Scholar
  76. 76.
    Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315:2190–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Carson JL, Guyatt G, Heddle NM, et al. Clinical practice guidelines from the AABB: red blood cell transfusion thresholds and storage. JAMA. 2016;316:2025–35.CrossRefPubMedGoogle Scholar
  78. 78.
    Dupuis C, Sonneville R, Adrie C, et al. Impact of transfusion on patients with sepsis admitted in intensive care unit: a systematic review and meta-analysis. Ann Intensive Care. 2017;7:5.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Swagata Tripathy
    • 1
  1. 1.Department of Anesthesia and Intensive CareAll India Institute of Medical SciencesBhubaneswarIndia

Personalised recommendations