Pain in the Neurocritical Care Unit

  • Matt Fischer
  • Markus Jackson
  • Alaa Abd-Elsayed


Pain is ubiquitous in the neurocritical care unit, stemming both from a patient’s underlying pathophysiology and the requirement for invasive monitoring and therapies. Untreated pain begets problematic physiologic consequences across multiple organ systems. Effective analgesic regimens depend on reliable methods for monitoring pain levels as well as associated depth of sedation, and specific tools are available for both communicative and noncommunicative patients. Effective multimodal analgesia commonly includes a combination of pharmacologic agents to achieve optimal pain control while minimizing untoward side effects. The pharmacokinetics and pharmacodynamics of opioids, benzodiazepines, propofol, and dexmedetomidine are discussed due to their prevalence in critical care units.


Neurocritical care ICU Pain Sedation Delirium Multimodal analgesia Opioid Propofol Benzodiazepine Dexmedetomidine 


  1. 1.
    Epstein J, Breslow MJ. The stress response of critical illness. Crit Care Clin. 1999;15(1):17–33.PubMedCrossRefGoogle Scholar
  2. 2.
    Schelling G, Stoll C, Haller M, et al. Health-related quality of life and posttraumatic stress disorder in survivors of the acute respiratory distress syndrome. Crit Care Med. 1998;26:651–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Tennant F. The physiologic effects of pain on the endocrine system. Pain Ther. 2013;2(2):75–86.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Brennan F, Carr DB, Cousins M. Pain management: a fundamental human right. Anesth Analg. 2007;105(1):205–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Payen JF, Bosson JL, Chanques G, et al. Pain assessment is associated with decreased duration of mechanical ventilation in the intensive care unit: a post Hoc analysis of the DOLOREA study. Anesthesiology. 2009;111(6):1308–16.PubMedCrossRefGoogle Scholar
  6. 6.
    Teitelbaum JS, Ayoub O, Skrobik Y. A critical appraisal of sedation, analgesia and delirium in neurocritical care. Can J Neurol Sci. 2011;38(6):815–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Cade CH. Clinical tools for the assessment of pain in sedated critically ill adults. Nurs Crit Care. 2008;13:288–97.PubMedCrossRefGoogle Scholar
  8. 8.
    Sessler CN, Jo Grap M, Ramsay MA. Evaluating and monitoring analgesia and sedation in the intensive care unit. Crit Care. 2008;12(Suppl 3):S2. Scholar
  9. 9.
    Williamson A, Hoggart B. Pain: a review of three commonly used pain rating scales. J Clin Nurs. 2005;14:798–804.PubMedCrossRefGoogle Scholar
  10. 10.
    Herr K, Coyne PJ, Key T, et al. Pain assessment in nonverbal patients: position statement with clinical practice recommendations. Pain Manag Nurs. 2006;7:44–52.PubMedCrossRefGoogle Scholar
  11. 11.
    Payen J, Bru O, Bosson J, et al. Assessing pain in critically ill sedated patients by using a behavioural pain scale. Crit Care Med. 2001;29:2258–63.PubMedCrossRefGoogle Scholar
  12. 12.
    Odhner M, Wegman D, Freeland N, et al. Assessing pain control in nonverbal critically ill adults. Dimens Crit Care Nurs. 2003;22:260–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Wegman DA. Tool for pain assessment. Crit Care Nurse. 2005;25(1):14–5.PubMedGoogle Scholar
  14. 14.
    Gelinas C, Fillion L, Puntillo KA, et al. Validation of the critical-care pain observation tool in adult patients. Am J Crit Care. 2006;15:420–7.PubMedGoogle Scholar
  15. 15.
    Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41(1):263–306.PubMedCrossRefGoogle Scholar
  16. 16.
    DAS-Taskforce 2015, et al. Evidence and consensus based guideline for the management of delirium, analgesia, and sedation in intensive care medicine. Revision 2015 (DAS-Guideline 2015) – short version. Ger Med Sci. 2015;13:Doc19. Scholar
  17. 17.
    Ely EW, Truman B, Shintani A, et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA. 2003;289(22):2982–91.CrossRefGoogle Scholar
  18. 18.
    Ouimet S, Kavanagh BP, Gottfried SB, et al. Incidence, risk factors, and consequences of ICU delirium. Intensive Care Med. 2007;33(8):66–73.PubMedCrossRefGoogle Scholar
  19. 19.
    Ely EW, Shintani A, Truman B, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2004;291(14):1753–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Ely EW, Inouye SK, Bernard GR, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA. 2001;286(21):2703–10.PubMedCrossRefGoogle Scholar
  21. 21.
    Sessler CN, Varney K. Patient-focused sedation and analgesia in the ICU. Chest. 2008;133(2):552–65.PubMedCrossRefGoogle Scholar
  22. 22.
    Trescot AM, Datta S, Lee M, et al. Opioid pharmacology. Pain Physician. 2008;11(2 Suppl):S133–53.PubMedGoogle Scholar
  23. 23.
    Mehta S, Burry L, Fischer S, et al. Canadian survey of the use of sedatives, analgesics, and neuromuscular blocking agents in critically ill patients. Crit Care Med. 2006;34(2):374–80.PubMedCrossRefGoogle Scholar
  24. 24.
    Martin J, Franck M, Sigel S, et al. Changes in sedation management in German intensive care units between 2002 and 2006: a national follow-up survey. Crit Care. 2007;11(6):R124.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Devlin JW, Roberts RJ. Pharmacology of commonly used analgesics and sedatives in the ICU: benzodiazepines, propofol, and opioids. Crit Care Clin. 2009;25(3):431–49.PubMedCrossRefGoogle Scholar
  26. 26.
    Kollef MH, Levy NT, Ahrens TS, et al. The use of continuous i.v. sedation is associated with prolongation of mechanical ventilation. Chest. 1998;114:541–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Somogyi AA, Barratt DT, Coller JK. Pharmacogenetics of opioids. Clin Pharmacol Ther. 2007;81(3):429–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Lotsch J, Skarke C, Liefhold J, et al. Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clin Pharmacokinet. 2004;43(14):983–1013.PubMedCrossRefGoogle Scholar
  29. 29.
    Smith HS. Variations in opioid responsiveness. Pain Physician. 2008;11(2):237–48.PubMedGoogle Scholar
  30. 30.
    Power BM, Forbes AM, van Heerden PV, et al. Pharmacokinetics of drugs used in critically ill adults. Clin Pharmacokinet. 1998;34(1):25–56.PubMedCrossRefGoogle Scholar
  31. 31.
    Bodenham A, Shelly MP, Park GR. The altered pharmacokinetics and pharmacodynamics of drugs commonly used in critically ill patients. Clin Pharmacokinet. 1988;14(6):347–73.PubMedCrossRefGoogle Scholar
  32. 32.
    Case J, Khan S, Khalid R, et al. Epidemiology of acute kidney injury in the intensive care unit. Crit Care Res Prac. 2013;2013:479730.Google Scholar
  33. 33.
    Hasselstrom J, Sawe J. Morphine pharmacokinetics and metabolism in humans. Clin Pharmacokinet. 1993;24(4):344–54.PubMedCrossRefGoogle Scholar
  34. 34.
    Andersen G, Christrup L, Sjøgren P. Relationships among morphine metabolism, pain, and side effects during long-term treatment: an update. J Pain Symptom Manag. 2003;25:74–91.CrossRefGoogle Scholar
  35. 35.
    Dean M. Opioids in renal failure and dialysis patients. J Pain Symptom Manag. 2004;28(5):497–504. Scholar
  36. 36.
    Smith MT. Neuroexcitatory effects of morphine and hydromorphone: evidence for implicating the 3-glucuronide metabolites. Clin Exp Pharmacol Physiol. 2000;27:524–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Babul N, Darke AC, Hagen N. Hydromorphone metabolite accumulation in renal failure. J Pain Symptom Manag. 1995;10(3):184–6.CrossRefGoogle Scholar
  38. 38.
    Fainsinger R, Schoeller T, Boiskin M, et al. Cognitive failure and coma after renal failure in a patient receiving captopril and hydromorphone. J Palliat Care. 1993;9(1):53–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Labroo RB, Paine MF, Thummel KE, et al. Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metab Dispos. 1997;25(9):1072–80.PubMedGoogle Scholar
  40. 40.
    Davis PJ, Stiller RL, Cook DR, et al. Pharmacokinetics of sufentanil in adolescent patients with chronic renal failure. Anesth Analg. 1988;67(3):268–71.PubMedCrossRefGoogle Scholar
  41. 41.
    Kreek MJ, Gutjahr CL, Garfield JW, et al. Drug interactions with methadone. Ann N Y Acad Sci. 1976;281:350–70.PubMedCrossRefGoogle Scholar
  42. 42.
    Kreek MJ, Schecter AJ, Gutjahr CL, et al. Methadone use in patients with chronic renal disease. Drug Alcohol Depend. 1980;5:197–205.PubMedCrossRefGoogle Scholar
  43. 43.
    Sharma S, Giampetro DM. Opioid adverse effects and opioid-induced hypogonadism. In: Deer T, et al., editors. Comprehensive treatment of chronic pain by medical, interventional, and integrative approaches. New York: Springer; 2013. p. 111–8.CrossRefGoogle Scholar
  44. 44.
    Gaudreau JD, Gagnon P, Roy MA, et al. Opioid medications and longitudinal risk of delirium in hospitalized cancer patients. Cancer. 2007;109:2365–73.PubMedCrossRefGoogle Scholar
  45. 45.
    Tobias JD. Tolerance, withdrawal, and physical dependency after long-term sedation and analgesia of children in the pediatric intensive care unit. Crit Care Med. 2000;28:2122–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Hofbauer R, Tesinsky P, Hammerschmidt V, et al. No reduction in the sufentanil requirement of elderly patients undergoing ventilatory support in the medical intensive care unit. Eur J Anaesthesiol. 1999;16:702–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Amerson L. Drug dependence as a chronic medical illness. JAMA. 2001;285(4):409.PubMedCrossRefGoogle Scholar
  48. 48.
    Jacobi J, Fraser GL, Coursin DB, et al. Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit Care Med. 2002;30(1):119–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Lugo RA, MacLaren R, Cash J, et al. Enteral methadone to expedite fentanyl discontinuation and prevent opioid abstinence syndrome in the PICU. Pharmacotherapy. 2001;21:1566–73.PubMedCrossRefGoogle Scholar
  50. 50.
    Meyer MM, Berens RJ. Efficacy of an enteral 10-day methadone wean to prevent opioid withdrawal in fentanyl-tolerant pediatric intensive care unit patients. Pediatr Crit Care Med. 2001;2:329–33.PubMedCrossRefGoogle Scholar
  51. 51.
    Smith G, Aitkenhead AR, Moppett IK, Thompson JP. Smith and Aitkenhead’s textbook of anaesthesia. 6th ed. Edinburgh: Churchill Livingstone; 2013.Google Scholar
  52. 52.
    Wilson KC, Reardon C, Theodore AC, et al. Propylene glycol toxicity: a severe iatrogenic illness in ICU patients receiving IV benzodiazepines. Chest. 2005;128(3):1674–81.PubMedCrossRefGoogle Scholar
  53. 53.
    Arroliga AC, Shehab N, Mccarthy K, et al. Relationship of continuous infusion lorazepam to serum propylene glycol concentration in critically ill adults. Crit Care Med. 2004;32(8):1709–14.PubMedCrossRefGoogle Scholar
  54. 54.
    Yahwak JA, Riker RR, Fraser GL, et al. Determination of a lorazepam dose threshold for using the osmol gap to monitor for propylene glycol toxicity. Pharmacotherapy. 2008;28(8):984–91.PubMedCrossRefGoogle Scholar
  55. 55.
    Barnes BJ, Gerst C, Smith JR, et al. Osmol gap as a surrogate marker for serum propylene glycol concentrations in patients receiving lorazepam for sedation. Pharmacotherapy. 2006;26:23–33.PubMedCrossRefGoogle Scholar
  56. 56.
    Shelly MP, Sultan MA, Bodenham A, et al. Midazolam infusions in critically ill patients. Eur J Anaesthesiol. 1991;8:21–7.PubMedGoogle Scholar
  57. 57.
    Kress JP, Pohlman AS, O'Connor MF, et al. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342:1471–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Carson SS, Kress JP, Rodgers JE, et al. A randomized trial of intermittent lorazepam versus propofol with daily interruption in mechanically ventilated patients. Crit Care Med. 2006;34:1326–32.PubMedCrossRefGoogle Scholar
  59. 59.
    Favetta P, Degoute CS, Perdrix JP, et al. Propofol metabolites in man following propofol induction and maintenance. Br J Anaesth. 2002;88(5):653–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Bailie GR, Cockshott ID, Douglas EJ, et al. Pharmacokinetics of propofol during and after long-term continuous infusion for maintenance of sedation in ICU patients. Br J Anaesth. 1992;68:486–91.PubMedCrossRefGoogle Scholar
  61. 61.
    Desousa K. Pain on propofol injection: causes and remedies. Indian J Pharmacol. 2016;48(6):617.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Bray RJ. Propofol infusion syndrome in children. Paediatr Anaesth. 1998;8:491–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Fudickar A, Bein B, Tonner PH. Propofol infusion syndrome in anaesthesia and intensive care medicine. Curr Opin Anaesthesiol. 2006;19:404–10.PubMedCrossRefGoogle Scholar
  64. 64.
    Vasile B, Rasulo F, Candiani A, et al. The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intensive Care Med. 2003;29:1417–25.PubMedCrossRefGoogle Scholar
  65. 65.
    Loh NW, Nair P. Propofol infusion syndrome. Contin Educ Anaesth Crit Care Pain. 2013;13(6):200–2.CrossRefGoogle Scholar
  66. 66.
    Yu S-B. Dexmedetomidine sedation in ICU. Korean J Anesthesiol. 2012;62(5):405.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Panzer O, Moitra V, Sladen RN. Pharmacology of sedative-analgesic agents: dexmedetomidine, remifentanil, ketamine, volatile anesthetics, and the role of peripheral mu antagonists. Anesthesiol Clin. 2011;29:587–605.PubMedCrossRefGoogle Scholar
  68. 68.
    Venn R, Karol M, Grounds R. Pharmacokinetics of dexmedetomidine infusions for sedation of postoperative patients requiring intensive caret. Br J Anaesth. 2002;88:669–75.PubMedCrossRefGoogle Scholar
  69. 69.
    Iirola T, Ihmsen H, Laitio R, Kentala E, Aantaa R, Kurvinen J-P, et al. Population pharmacokinetics of dexmedetomidine during long-term sedation in intensive care patients. Br J Anaesth. 2012;108:460–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Sanders RD, Maze M. Contribution of sedative-hypnotic agents to delirium via modulation of the sleep pathway. Can J Anaesth. 2010;58:149–56.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Figueroa-Ramos MI, Arroyo-Novoa CM, Lee KA, Padilla G, Puntillo KA. Sleep and delirium in ICU patients: a review of mechanisms and manifestations. Intensive Care Med. 2009;35:781–95.PubMedCrossRefGoogle Scholar
  72. 72.
    Yoshitomi T, Kohjitani A, Maeda S, Higuchi H, Shimada M, Miyawaki T. Dexmedetomidine enhances the local anesthetic action of lidocaine via an α-2A adrenoceptor. Anesth Analg. 2008;107:96–101.PubMedCrossRefGoogle Scholar
  73. 73.
    Ishii H, Kohno T, Yamakura T, Ikoma M, Baba H. Action of dexmedetomidine on the substantia gelatinosa neurons of the rat spinal cord. Eur J Neurosci. 2008;27:3182–90.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93:382–94.PubMedCrossRefGoogle Scholar
  75. 75.
    Gerlach AT, Murphy CV, Dasta JF. An updated focused review of dexmedetomidine in adults. Ann Pharmacother. 2009;43:2064–74.PubMedCrossRefGoogle Scholar
  76. 76.
    Guinter JR, Kristeller JL. Prolonged infusions of dexmedetomidine in critically ill patients. Am J Health Syst Pharm. 2010;67:1246–53.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Matt Fischer
    • 1
  • Markus Jackson
    • 1
  • Alaa Abd-Elsayed
    • 1
  1. 1.AnesthesiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA

Personalised recommendations