Advertisement

Fluid Management in Neurointensive Care

  • Wojciech Dabrowski
  • Robert Wise
  • Ziemowit Rzecki
  • Manu L. N. G. Malbrain
Chapter

Abstract

The main treatment for intravascular volume deficit is the appropriate administration of intravenous fluids, taking into account the type, timing, dose and frequency of dosages. According to the revised Starling equation, the inappropriate administration of intravenous fluid may cause pathological interstitial fluid distribution and elimination. This may adversely affect perivascular fluid balance and brain interstitial fluid composition, finally leading to cerebral and/or spinal cord oedema and cellular injury. Fluid composition and tonicity are crucial when considering which intravenous solution to use in the treatment of neurologic conditions, particularly cerebral trauma. This chapter discusses the different choices of fluid treatment in neurointensive care patients. This decision-making process should be guided by the patient’s haemodynamic condition, electrolyte disturbances and type and phase of the central nervous system injury. Generally, hypotonic fluids and synthetic colloids should be avoided. Both cumulative negative and positive fluid balance within the first week are associated with worse outcomes. The use of saline solutions should be guided by serum electrolyte concentrations.

Keywords

Neurointensive care Critical care Fluids Intravenous Neurosurgery Trauma 

Notes

Competing Interests

Wojciech Dabrowski, Robert Wise, Tom Woodcock, Ziemowit Rzecki and Manu Malbrain declare that they have no competing interests.

References

  1. 1.
    Roberston CS. Management of cerebral perfusion pressure after traumatic brain injury. Anesthesiology. 2001;95:1513–7.CrossRefGoogle Scholar
  2. 2.
    Güiza F, Depreitere B, Piper I, Citerio G, Chambers I, Jones PA, Lo TY, Enblad P, Nillson P, Feyen B, Jorens P, Maas A, Schuhmann MU, Donald R, Moss L, Van den Berghe G, Meyfroidt G. Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury. Intensive Care Med. 2015;41(6):1067–76.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Martin NA, Patwardhan RV, Alexander MJ, Africk CZ, Lee JH, Shalmon E, Hovda DA, Becked DP. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia and vasospasm. J Neurosurg. 1997;87(1):9–19.PubMedCrossRefGoogle Scholar
  4. 4.
    Bouma GJ, Muizelaar JP, Choi SC, Newlon PG, Young HF. Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg. 1991;75(5):685–93.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016;36(3):513–38.PubMedCrossRefGoogle Scholar
  6. 6.
    Jungner M, Siemund R, Venturoli D, Reinstrup P, Schalen W, Bentzer P. Blood-brain barrier permeability following traumatic brain injury. Minerva Anesthesiol. 2016;82:525–33.Google Scholar
  7. 7.
    Woodcock TE, Wooscock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–94.PubMedCrossRefGoogle Scholar
  8. 8.
    Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res. 2010;2:14.  https://doi.org/10.1186/2040-2384-2-14.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gido G, Kristian T, Siesjo BK. Extracellular potassium in a neocortical core area after transient focal ischemia. Stroke. 1997;28:206–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Woodcock TE. Plasma volume, tissue oedema and the steady-state Starling Pronciple. Br J Anaesth Educ. 2017;17(2):74–8.Google Scholar
  11. 11.
    Curry FR, Adamson RH. Tonic regulation of vascular permeability. Acta Physiol. 2013;207:628–49.CrossRefGoogle Scholar
  12. 12.
    Reddy S, Weinberg L, Young P. Crystalloid fluid therapy. Crit Care. 2016;20:59.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Tatara T. Context-sensitive fluid therapy in critical illness. J Intensive Care. 2016;4:20.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Van Aken HK, Kampmeier TG, Ertmer C, Westphal M. Fluid resuscitation in patients with traumatic brain injury: what is a SAFE approach? Curr Opin Anaesthesiol. 2012;25(5):563–5.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Maguigan KL, Dennis BM, Hamblin SE, Guillamondegui OD. Method of hypertonic saline administration: effect on osmolality in traumatic brain injury. J Clin Neurosci. 2017;39:147–50.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ichai C, Payen JF, Orban JC, Quintard H, Roth H, Legrand R, Francony G, Leverve XM. Half-molar sodium lactate infusion to prevent intra-cranial hypertensive episodes in severe traumatic brain injured patients: a randomized controlled trial. Intensive Care Med. 2013;39:1413–22.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Tan SK, Kolmodin L, Sekhon MS, Qiao L, Zou J, Henderson WR, Griesdale DE. The effect of continuous hypertonic saline infusion and hypernatremia on mortality in patients with severe traumatic brain injury: a retrospective cohort study. Can J Anaesth. 2016;63(6):664–73.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Rockswold GL, Solid CA, Paredes-Andrade E, Rockswold SB, Jancik JT, Quickel RR. Hypertonic saline and its effect on intracranial pressure, cerebral perfusion pressure, and brain tissue oxygen. Neurosurgery. 2009;65(6):1035–42.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ziai WC, Toung TJ, Bhardwaj A. Hypertonic saline: first line therapy for cerebral edema? J Neurol Sci. 2007;261:157–66.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Qureshi AI, Suarez JI. Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension. Crit Care Med. 2000;28:3301–13.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Akdemir G, Lier MS, Dujovny M. Misra m. Intraventricular atrial natriuretic peptide for acute intracranial hypertension. Neurol Res. 1997;19:515–20.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Skau M, Goetze JP, Rehfeld JF, Jensen R. Natriuretic pro-peptides in idiopathic intracranial hypertension. Regul Pept. 2010;164(2–3):71–7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Glenn TC, Kelly DF, Boscardin JW, McArthur DL, Vespa P, Oertel M, Hovda DA, Bersneider M, Hillered L, Martin NA. Energy dysfunction as a predictor of outcome after moderate or severe head injury: incidence of oxygen, glucose and lactate metabolism. J Cereb Blood Flow Metab. 2003;23(10):1239–50.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Carteron L, Bouzat P, Oddo M. Cerebral microdialysis monitoring to improve individualized neurointensive care therapy: an update of recent clinical data. Front Neurol. 2017;8:601.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Holloway R, Zhou Z, Harvey HB, Levasseur JE, Rice AC, Sun D, Hamm RJ, Bullock MR. Effect of lactate therapy upon cognitive deficits after traumatic brain injury in the rat. Acta Neurochir. 2007;149:919–27.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Berthet C, Lei H, Thevenet J, Gruetter R, Magistretti PJ, Hirt L. Neuroprotective role of lactate after cerebral ischemia. J Cereb Blood Flow Metab. 2009;29:1780–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Belanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14:724–38.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Shackford SR. Prehospital fluid resuscitation of known or suspected traumatic brain injury. J Trauma. 2011;70(suppl 5):S32–3.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Tan PG, Cincotta M, Clavisi O, Bragge P, Wasiak J, Pattuwage L, Gruen RL. Review article. Prehospital fluid management in traumatic brain injury. Emerg Med Australas. 2011;23(6):665–76.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Cooper DJ, Myles PS, McDermott FT, Murray LJ, Laidlaw J, Cooper G, Tremayne AB, Bernard SS, Ponsford J, Study Investigators HTS. Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury: a randomized controlled trial. JAMA. 2004;291(11):1350–7.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Vedantam A, Robertson CS, Gopinath SP. Morbidity and mortality associated with hypernatremia in patients with severe traumatic brain injury. Neurosurg Focus. 2017;43(5):E2.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Aiyagari V, Deibert E, Diringer MN. Hypernatremia in the neurologic intensive care unit: how high is too high? J Crit Care. 2006;21:163–72.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Carney N, Totten AM, O'Reilly C, Ullman JS, Hawryluk GW, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6–15.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Hays AN, Lazaridis C, Neyens R, Nicholas J, Gay S, Chalela JA. Osmotherapy: use among neurointensivists. Neurocrit Care. 2011;14:222–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Lin SY, Tang SC, Tsai LK, Yeh SJ, Shen LJ, Wu FL, Jeng JS. Incidence and risk factors for acute kidney injury following mannitol infusion in patients with acute stroke: a retrospective cohort study. Medicine (Baltimore). 2015;94(47):e2032.CrossRefGoogle Scholar
  36. 36.
    Deng Y, Yuan J, Chi R, Ye H, Zhou D, Wang S, Mai C, Nie Z, Wang L, Zhai Y, Gao L, Zhang D, Hu L, Deng Y, Chen C. The incidence, risk factors and outcomes of postoperative acute kidney injury in neurosurgical critically ill patients. Sci Rep. 2017;7(1):4245.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Fang L, You H, Chen B, Xu Z, Gao L, Liu J, Xie Q, Zhou Y, Gu Y, Lin S, Ding F. Mannitol is an independent risk factor of acute kidney injury after cerebral trauma: a case control study. Ren Fail. 2010;32:673–9.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Sji J, Qian J, Li H, Luo H, Luo W, Lin Z. Renal tubular epithelial cells injury induced by mannitol and its potential mechanism. Ren Fail. 2018;40(1):85–91.CrossRefGoogle Scholar
  39. 39.
    Seo W, Oh H. Alterations in serum osmolality, sodium, and potassium levels after repeated mannitol administration. J Neurosci Nurs. 2010;42(4):201–7.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Sillesen M, Jin G, Johanson PI, Alam H. Resuscitation speed affects brain injury in a large animal model of traumatic brain injury and shock. Scand J Trauma Resusc Emerg Med. 2014;22:46.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zhao Z, Wang D, Jia Y, Tian Y, Wang Y, Wei Y, Zhang J, Jiang R. Analysis of the association of fluid balance and short-term outcome in traumatic brain injury. J Neurol Sci. 2016;364:12–8.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Clifton GL, Miller ER, Choi SC Levin HS. Fluid thresholds and outcome from severe brain injury. Crit Care Med. 2002;30(4):739–45.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Dabrowski W, Woodcock T, Rzecki Z, Malbrain ML. The use of crystalloids in traumatic brain injury. Anesthesiol Intensive Ther. 2018;50(2):150–9.CrossRefGoogle Scholar
  44. 44.
    Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evolution of the evidence. Fluids Barriers CNS. 2014;11(1):26.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zander R. Fluid management. Second expanded edition. Melsungen: Bibliomed Medizinische Verlags GmbH; 2009. p. 32–9.Google Scholar
  46. 46.
    Steward PA. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol. 1983;61:1444–61.CrossRefGoogle Scholar
  47. 47.
    Morgan TJ, Venkatesh B, Beindorf A, Andrew I, Hall J. Acid-base and bio-energetics during balanced versus unbalanced normovolaemic haemodilution. Anaesth Intensive Care. 2007;35:173–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Lobo DN, Award S. Should chloride-rich crystalloids remain the mainstay of fluid resuscitation to prevent ‘pre-renal’ acute kidney injury?: con. Kidney Int. 2014;86(6):1096–105.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wilox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71:726–35.CrossRefGoogle Scholar
  50. 50.
    Roche AM, James MFM, Bennett-Guerrero E, Mythen MG. A head-to-head comparison of the in vitro coagulation effects of saline-based and balanced electrolyte crystalloid and colloid intravenous fluid. Anesth Analg. 2006;102:1274–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Dekker SE, Sillesen M, Bambakidis T, Jin G, Liu B, Boer C, et al. Normal saline influences coagulation and endothelial function after traumatic brain injury and hemorrhagic shock in pigs. Surgery. 2014;156(3):556–63.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Folkerson LE, Sloan D, Cotton BA, Holcomb JB, Tomasek JS, Wade CE. Predicting progressive hemorrhagic injury from isolated traumatic brain injury and coagulation. Surgery. 2015;158(3):655–61.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Talving P, Benfield R, Hadjizacharia P, Inaba K, Chan LS, Demetriades D. Coagulopathy in severe traumatic brain injury: a prospective study. J Trauma. 2009;66(1):55–62.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    MacLeod JB, Winkler AM, McCoy CC, Hillyer CD, Shaz BH. Early trauma induced coagulopathy (ETIC): prevalence across the injury spectrum. Injury. 2014;45(5):910–5.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Greuters S, van den Berg A, Franschman G, Viersen VA, Beishuizen A, Peerdeman SM, Boer C, ALARM-BLEEDING Investigators. Acute and delayed mild coagulopathy are related to outcome in patients with isolated traumatic brain injury. Crit Care. 2011;15:R2.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Exo JL, Shellington DK, Bayir H, Vagni VA, Janesco-Feldman K, Ma L, et al. Resuscitation of traumatic brain injury and hemorrhagic shock with polynitroxylated albumin, hextend, hypertonic saline, and lactated Ringer’s: effects on acute hemodynamics, survival, and neuronal death in mice. J Neurotrauma. 2009;26(12):2403–8.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Cooper DJ, Myburgh J, Heritier S, Finfer S, Bellomo R, Billot L, et al. Albumin resuscitation for traumatic brain injury: is intracranial hypertension the cause of increased mortality? J Neurotrauma. 2013;30(7):512–8.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Huraux C, Ankri AA, Eyraud D, Sevin O, Ménégaux F, Coriat P, et al. Hemostatic changes in patients receiving hydroxyethyl starch: the influence of ABO blood group. Anesth Analg. 2001;92(6):1396–401.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Kozek-Langenecker SA. Fluids and coagulation. Curr Opin Crit Care. 2015;21:285–91.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Martin G, Bennett-Guerrero E, Wakeling H, Mythen MG, el-Moalem H, Robertson K. A prospective, randomized comparison of tromboelastographic coagulation profile in patients receiving lactated Ringer’s solution, 6% hetastarch in a balanced-saline vehicle or 6% hetastarch in saline during major surgery. J Cardiothoracic Vasc Anesth. 2002;16:441–6.CrossRefGoogle Scholar
  61. 61.
    Li N, Zhao WG, Zhang WF. Acute kidney injury in patients with severe traumatic brain injury: implementation of the acute kidney injury network stage system. Neurocrit Care. 2011;14:377–81.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Chowdhury T, Cappellani RB, Schaller B, Daya J. Role of colloids in traumatic brain injury: use or not to be used? J Anaesthesiol Clin Pharmacol. 2013;29:299–301.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Moeller C, Fleischmann C, Thomas-Rueddel D, Vlasakov V, Rochwerg B, Theurer P, et al. How safe is gelatin? A systematic review and meta-analysis of gelatin-containing plasma expanders vs crystalloids and albumin. J Crit Care. 2016;35:75–83.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Shah G, Scadding G, Nguyen-Lu N, Wigmore T, Chenzbraun A, Wechalekar K, et al. Peri-operative cardiac arrest with ST elevation secondary to gelofusin anaphylaxis–Kounis syndrome in the anaesthetic room. Int J Cardiol. 2013;164(3):e22–6.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Silvani A, Calandra-Bounaura G, Dampney RAL, Cortelli P. Brain-heart interactions: physiology and clinical implications. Phil Trans R Soc A. 2016;374:20150181.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Dabrowski W, Schlegel TT, Wosko J, Rola R, Rzecki Z, Malbrain MLNG, Jaroszynski A. Changes in spatial QRS-T angle and QTc interval in patients with traumatic brain injury with or without intra-abdominal hypertension. J Electrocardiol. 2018;51(3):499–507.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Al-Mufti F, Amuluru K, Changa A, Lander M, Patel N, Wajswol E, et al. Traumatic brain injury and intracranial hemorrhage-induced cerebral vasospasm: a systematic review. Neurosurg Focus. 2017;43(5):E14.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Ziegler D, Cravens G, Poche G, Gandhi R, Tellez M. Use of transcranial Doppler in patients with severe traumatic brain injuries. J Neurotrauma. 2017;34(1):121–7.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Kramer DR, Winer JL, Matthew Pease BA, Amar AP, Mack WJ. Cerebral vasospasm in traumatic brain injury. Neurol Res. 2013;2013:415813.  https://doi.org/10.1155/2013/415813.CrossRefGoogle Scholar
  70. 70.
    Bederson JB, Connolly ES Jr, Batjer HH, Dacey RG, Dion JE, Diringer MN, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the stroke council, American heart association. Stroke. 2009;40(3):994–1025.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Lee KH, Lukovits T, Friedman JA. Triple-H therapy for cerebral vasospasm following subarachnoid hemorrhage. Neurocrit Care. 2006;4(1):68–76.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Langham J, Goldfrad C, Teasdale G, Shaw D, Rowan K. Calcium channel blockers for acute traumatic brain injury. Cochrane Database Syst Rev. 2000;2:CD000565.Google Scholar
  73. 73.
    Velat GJ, Kimball MM, Mocco JD, Hoh BL. Vasospasm after aneurysmal subarachnoid hemorrhage: review of randomized controlled trials and meta-analyses in the literature. World Neurosurg. 2011;76(5):446–54.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Malinova V, Schatlo B, Voit M, Suntheim P, Rohde V, Mielke D. The impact of temporary clipping during aneurysm surgery on the incidence of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2017;15:1–7.Google Scholar
  75. 75.
    Moro N, Katayama Y, Igarashi T, Mori T, Kawamata T, Kojima J. Hyponatremia in patients with traumatic brain injury: incidence, mechanism and response to sodium supplementation. Surg Neurol. 2007;68:387–93.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Santi M, Lava SA, Camozzi P, Giannini O, Milani GP, Simonetti GD, et al. The great fluid debate: saline or so-called “balanced” salt solutions? Ital J Pediatr. 2015;41:47.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Lehmann L, Bendel S, Uehlinger DE, Takala J, Schafer M, Reinert M, Jakob SM. Randomized, double-blind trial of the effect of fluid composition on electrolyte, acid-base, and fluid homeostasis in patients early after subarachnoid hemorrhage. Neurocrit Care. 2013;18(1):5–12.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Dankbaar JW, Slooter AJ, Rinkel GJ, Schaaf IC. Effect of different components of triple-H therapy on cerebral perfusion in patients with aneurysmal subarachnoid haemorrhage: a systematic review. Crit Care. 2010;14(1):R23.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Manzanares W, Aramendi I, Langlois PL, Biestro A. Hyponatremia in the neurocritical care patient: an approach based on current evidence. Med Intensiva. 2015;39(4):234–43.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Bederson JB, Connolly ES Jr, Batjer HH, American Heart Association, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the stroke council, American Heart Association. Stroke. 2009;40:994–1025.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Togashi K, Joffe AM, Sekhar L, Kim L, Lam A, Yanez D, et al. Randomized pilot trial of intensive management of blood pressure or volume expansion in subarachnoid hemorrhage (IMPROVES). Neurosurgery. 2015;76(2):125–34.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Egge A, Waterloo K, Sjøholm H, Solberg T, Ingebrigtsen T, Romner B. Prophylactic hyperdynamic postoperative fluid therapy after aneurysmal subarachnoid hemorrhage: a clinical, prospective, randomized, controlled study. Neurosurgery. 2001;49(3):593–605.PubMedGoogle Scholar
  83. 83.
    Heros RC, Zervas NT, Varsos V. Cerebral vasospasm after subarachnoid hemorrhage: and update. Ann Neurol. 1983;14:599–608.PubMedCrossRefGoogle Scholar
  84. 84.
    Diringer M, Bleck T, Claude Hemphill J, Menon D, Shutter L, Vespa P, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s multidisciplinary consensus conference. Neurocrit Care. 2011;15:211–40.PubMedCrossRefGoogle Scholar
  85. 85.
    Yoneda H, Nakamura T, Shirao S, Tanaka N, Ishihara H, Suehiro E, et al. Multicenter prospective cohort study on volume management after subarachnoid hemorrhage: hemodynamic changes according to severity of subarachnoid hemorrhage and cerebral vasospasm. Stroke. 2013;44(8):2155–61.PubMedCrossRefGoogle Scholar
  86. 86.
    Sumas ME, Legos JJ, Nathan D, Lamperti AA, Tuma RF, Young WF. Tonicity of resuscitative fluids influences outcome after spinal cord injury. Neurosurgery. 2001;48(1):167–72.PubMedGoogle Scholar
  87. 87.
    Nout YS, Mihai G, Tovar CA, Schmalbrock P, Bresnahan JC, Beattie MS. Hypertonic saline attenuates cord swelling and edema in experimental spinal cord injury: a study utilizing magnetic resonance imaging. Crit Care Med. 2009;37(7):2160–6.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Verkman AS, Smith AJ, Phuan PW, Tradtrantip L, Anderson MO. The aquaporin-4 water channel as a potential drug target in neurological disorders. Expert Opin Ther Targets. 2017;21(12):1161–70.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Luo C, Yao X, Li J, He B, Liu Q, Ren H. Paravascular pathways contribute to vasculitis and neuroinflammation after subarachnoid hemorrhage independently of glymphatic control. Cell Death Dis. 2016;7:e2160.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Salvarani C, Brown RJ, Hunder GG. Adult primary central nervous system vasculitis. Lancet. 2012;380:767–77.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Hostenbach S, Cambron M, D’haeseleer M, Kooijman R, De Keyser J. Astrocyte loss and astrogliosis in neuroinflammatory disorders. Neurosci Lett. 2014;565:39–41.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Shasby DM, Ries DR, Shasby SS, Winter MC. Histamine stimulates phosphorylation of adherens junction proteins and alters their link to vimentin. Am J Physiol Lung Cell Mol Physiol. 2002;283:L1330–8.CrossRefGoogle Scholar
  93. 93.
    Liu LB, Liu XB, Ma J, Liu YH, Li ZQ, Ma T, et al. Bradykinin increased the permeability of BTB via NOS/NO/ZONAB-mediating down-regulation of claudin-5 and occludin. Biochem Biophys Res Commun. 2015;464(1):118–25.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Corrigan F, Mander KA, Leonard AV, Vink R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation. 2016;13(1):264.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A, et al. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis. 2015;78:115–25.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Zeng WX, Han YL, Zhu GF, Huang LQ, Deng YY, Wang QS, et al. Hypertonic saline attenuates expression of Notch signaling and proinflammatory mediators in activated microglia in experimentally induced cerebral ischemia and hypoxic BV-2 microglia. BMC Neurosci. 2017;18(1):32.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Huang LQ, Zhu GF, Deng YY, Jiang WQ, Fang M, Chen CB, et al. Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-α and IL-1β-induced Na-K-Cl Cotransporter up-regulation. J Neuroinflammation. 2014;11:102.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Haas M, Forbush BR. The Na-K-Cl cotransporter of secretory epithelia. Annu Rev Physiol. 2000;62:515–34.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Jayakumar AR, Norenberg MD. The Na-K-Cl co-transporter in astrocyte swelling. Metab Brain Dis. 2010;25(1):31–8.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Huang L, Cao W, Deng Y, Zhu G, Han Y, Zeng H. Hypertonic saline alleviates experimentally induced cerebral oedema through suppression of vascular endothelial growth factor and its receptor VEGFR2 expression in astrocytes. BMC Neurosci. 2016;17(1):64.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Gautier S, Ouk T, Tagzirt M, Lefebvre C, Laprais M, Pétrault O, et al. Impact of the neutrophil response to granulocyte colony-stimulating factor on the risk of hemorrhage when used in combination with tissue plasminogen activator during the acute phase of experimental stroke. J Neuroinflammation. 2014;11:96.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Cuadrado E, Ortega L, Hernández-Guillamon M, Penalba A, Fernández-Cadenas I, Rosell A, Montaner J. Tissue plasminogen activator (t-PA) promotes neutrophil degranulation and MMP-9 release. J Leukoc Biol. 2008;84:207–14.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Peng Y, Du J, Zhao X, Shi X, Wang Y. Effects of colloid pre-loading on thromboelastography during elective intracranial tumor surgery in pediatric patients: hydroxyethyl starch 130/0.4 versus 5% human albumin. BCM Anesthesiol. 2017;17:62.CrossRefGoogle Scholar
  104. 104.
    Furlan JC, Fehlings MG. Hyponatremia in the acute stage after traumatic cervical spinal cord injury: clinical and neuroanatomic evidence for autonomic dysfunction. Spine. 2009;34:501–11.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Brouwer MC, van dr Beek D, Heckenberg SG, Spanjaard L, de Gans J. Hyponatremia in adults with community-acquired bacterial meningitis. QJM. 2007;100:37–40.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Kirkman MA. Managing hyponatremia in neurosurgical patients. Minerva Endocrinol. 2014;39:13–26.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Stelfox HT, Ahmed SB, Khandwala F, Zygun D, Shahpori R, Laupland K. The epidemiology of intensive care unit-acquired hyponatraemia and hypernatraemia in medical-surgical intensive care units. Crit Care. 2008;12:R162.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Leonard J, Garrett RE, Salottolo K, Slone DS, Mains CW, Carrick MM, Bar-Or D. Cerebral salt wasting after traumatic brain injury: a review of the literature. Scand J Trauma Resusc Emerg Med. 2015;23:98.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kirkman MA, Albert AF, Ibrahim A, Doberenz D. Hyponatremia and brain injury: historical and contemporary perspectives. Neurocrit Care. 2013;18:406–16.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Huda MS, Boyd A, Skagen K, Wile D, van Heyningen C, Watson I, et al. Investigation and management of severe hyponatraemia in hospital setting. Postgrad Med J. 2006;82:216–9.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Rahman M, Friedman WA. Hyponatremia in neurosurgical patients: Clinical guidelines development. Neurosurgery. 2009;65:925–35.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Diringer MN, Zazulia AR. Hyponatremia in neurologic patients: consequences and approaches to treatment. Neurologist. 2006;12(3):117–26.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Liamis G, Filippatos TD, Elisaf MS. Correction of hypovolemia with crystalloid fluids: individualizing infusion therapy. Postgrad Med. 2015;127(4):405–12.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Bradshaw K, Smith M. Disorders of sodium balance after brain injury. Cont Educ Anaesth Crit Care Pain. 2008;8(4):129–33.CrossRefGoogle Scholar
  115. 115.
    Sterns RH, Hix JK, Silver S. Treating profound hyponatremia: a strategy for controlled correction. Am J Kidney Dis. 2010;56:774–9.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Froelich M, Ni Q, Wess C, Ougorets I, Härtl R. Continuous hypertonic saline therapy and the occurrence of complications in neurocritically ill patients. Crit Care Med. 2009;37:1433–41.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Li M, Hu YH, Chen G. Hypernatremia severity and the risk of death after traumatic brain injury. Injury. 2013;44(9):1213–8.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Hadjizacharia P, Beale EO, Inaba K, Chan LS, Demetriades D. Acute diabetes insipidus in severe head injury: a prospective study. J Am Coll Surg. 2008;207:477–84.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Muhsin SA, Mount DB. Diagnosis and treatment of hypernatremia. Best Pract Res Clin Endocrinol Metab. 2016;30(2):189–203.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Adrogue HJ, Madias NE. Hypernatremia. N Engl J Med. 2000;342:1493e9.Google Scholar
  121. 121.
    Severs D, Hoorn EJ, Rookmaaker MB. A critical appraisal of intravenous fluids: from the physiological basis to clinical evidence. Nephrol Dial Transplant. 2015;30:178–87.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Wojciech Dabrowski
    • 1
  • Robert Wise
    • 2
    • 3
  • Ziemowit Rzecki
    • 1
  • Manu L. N. G. Malbrain
    • 4
    • 5
  1. 1.Department of Anaesthesiology and Intensive TherapyMedical University of LublinLublinPoland
  2. 2.Department of Anaesthetics, Critical Care and Pain ManagementPietermaritzburg MetropolitanPietermaritzburgSouth Africa
  3. 3.Discipline of Anaesthesiology and Critical Care, School of Clinical MedicineUniversity of KwaZulu-NatalDurbanSouth Africa
  4. 4.Intensive Care UnitUniversity Hospital Brussels (UZB)JetteBelgium
  5. 5.Faculty of Medicine and PharmacyVrije Universiteit Brussel (VUB)BrusselsBelgium

Personalised recommendations