Respiratory Care of Neurologic Patient

  • Lorenzo Ball
  • Denise Battaglini
  • Paolo Pelosi


Neurologic patients often require prolonged mechanical ventilation due to inability to protect the airway. Ventilatory strategies should aim to preserve oxygenation, to maintain carbon dioxide levels within acceptable ranges, and moreover to reach an adequate blood flow and cerebral perfusion pressure in order to prevent secondary brain damage. However, there is no unanimous agreement on ventilatory strategy in brain-injured patients because brain and lungs have complex interactions and small ventilatory changes may lead to important changes in cerebral physiology. Furthermore, the best ventilatory strategy is not entirely clear and still debated. In addition, neurocritical patients present high incidence of secondary lung injury and that makes the choice of ventilatory setting difficult. When avoidance of intubation is warranted, non-invasive support techniques could be considered. Weaning should be initiated as soon as possible because of the complications associated with prolonged intubation and tracheostomy. Scores and protocols used in general critically ill patients might not be directly applicable to neurocritical patients. Tracheostomy could promote earlier weaning because in neurological patients the predominant cause of respiratory dysfunction is not ventilation itself, but rather the inability to maintain upper airways patency. The better timing to tracheostomy in neurological ICU patient is still unknown, but usually a cutoff of 2 weeks of mechanical ventilation is applicable also in these patients. The aim of this chapter is to provide a comprehensive overview of the pathophysiologic and clinical aspects concerning the respiratory care of the neurologic patient.


Neurocritical Ventilation Blood flow Perfusion pressure Airway protection Secondary damage Hypercapnia Intracranial Hypertension 


  1. 1.
    Seder DB, Bösel J. Airway management and mechanical ventilation in acute brain injury. Handb Clin Neurol. 2017;140:15–32.CrossRefGoogle Scholar
  2. 2.
    Obrist WD, Langfitt TW, Jaggi JL, Cruz J, Gennarelli TA. Cerebral blood flow and metabolism in comatose patients with acute head injury. Relationship to intracranial hypertension. J Neurosurg. 1984;61(2):241–53.CrossRefGoogle Scholar
  3. 3.
    Marion DW, Bouma GJ. The use of stable xenon-enhanced computed tomographic studies of cerebral blood flow to define changes in cerebral carbon dioxide vasoresponsivity caused by a severe head injury. Neurosurgery. 1991;29(6):869–73.CrossRefGoogle Scholar
  4. 4.
    Tayal VS, Riggs RW, Marx JA, Tomaszewski CA, Schneider RE. Rapid-sequence intubation at an emergency medicine residency: success rate and adverse events during a two-year period. Acad Emerg Med Off J Soc Acad Emerg Med. 1999;6(1):31–7.CrossRefGoogle Scholar
  5. 5.
    Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS, Bratton SL, Chestnut RM, et al. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma. 2007;24(Suppl 1):S59–64.Google Scholar
  6. 6.
    Mascia L, Zavala E, Bosma K, Pasero D, Decaroli D, Andrews P, et al. High tidal volume is associated with the development of acute lung injury after severe brain injury: an international observational study. Crit Care Med. 2007;35(8):1815–20.CrossRefGoogle Scholar
  7. 7.
    Koutsoukou A, Katsiari M, Orfanos SE, Kotanidou A, Daganou M, Kyriakopoulou M, et al. Respiratory mechanics in brain injury: a review. World J Crit Care Med. 2016;5(1):65–73.CrossRefGoogle Scholar
  8. 8.
    Chen H, Xu M, Yang Y-L, Chen K, Xu J-Q, Zhang Y-R, et al. Effects of increased positive end-expiratory pressure on intracranial pressure in acute respiratory distress syndrome: a protocol of a prospective physiological study. BMJ Open. 2016;6(11):e012477.CrossRefGoogle Scholar
  9. 9.
    Ball L, Costantino F, Orefice G, Chandrapatham K, Pelosi P. Intraoperative mechanical ventilation: state of the art. Minerva Anestesiol. 2017;83(10):1075–88.PubMedGoogle Scholar
  10. 10.
    Cruz FF, Ball L, Rocco PRM, Pelosi P. Ventilator-induced lung injury during controlled ventilation in patients with acute respiratory distress syndrome: less is probably better. Expert Rev Respir Med. 2018;12(5):403–14.CrossRefGoogle Scholar
  11. 11.
    Güldner A, Kiss T, Serpa Neto A, Hemmes SNT, Canet J, Spieth PM, et al. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology. 2015;123(3):692–713.CrossRefGoogle Scholar
  12. 12.
    McCredie VA, Alali AS, Scales DC, Adhikari NKJ, Rubenfeld GD, Cuthbertson BH, et al. Effect of early versus late tracheostomy or prolonged intubation in critically ill patients with acute brain injury: a systematic review and meta-analysis. Neurocrit Care. 2017;26(1):14–25.CrossRefGoogle Scholar
  13. 13.
    Mullaguri N, Khan Z, Nattanmai P, Newey CR. Extubating the neurocritical care patient: a spontaneous breathing trial algorithmic approach. Neurocrit Care. 2018;28(1):93–6.CrossRefGoogle Scholar
  14. 14.
    McGuire G, Crossley D, Richards J, Wong D. Effects of varying levels of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Crit Care Med. 1997;25(6):1059–62.CrossRefGoogle Scholar
  15. 15.
    Boone MD, Jinadasa SP, Mueller A, Shaefi S, Kasper EM, Hanafy KA, et al. The effect of positive end-expiratory pressure on intracranial pressure and cerebral hemodynamics. Neurocrit Care. 2017;26(2):174–81.CrossRefGoogle Scholar
  16. 16.
    Shapiro HM, Marshall LF. Intracranial pressure responses to PEEP in head-injured patients. J Trauma. 1978;18(4):254–6.CrossRefGoogle Scholar
  17. 17.
    The ARDS Clinical Trials Network, National Heart, Lung, and Blood Institute, National Institutes of Health. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med. 2000;342(18):1301–8.CrossRefGoogle Scholar
  18. 18.
    Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303(9):865–73.CrossRefGoogle Scholar
  19. 19.
    Bugedo G, Retamal J, Bruhn A. Does the use of high PEEP levels prevent ventilator-induced lung injury? Rev Bras Ter Intensiva. 2017;29(2):231–7.CrossRefGoogle Scholar
  20. 20.
    Flexman AM, Gooderham PA, Griesdale DE, Argue R, Toyota B. Effects of an alveolar recruitment maneuver on subdural pressure, brain swelling, and mean arterial pressure in patients undergoing supratentorial tumour resection: a randomized crossover study. Can J Anaesth. 2017;64(6):626–33.CrossRefGoogle Scholar
  21. 21.
    Nemer SN, Caldeira JB, Azeredo LM, Garcia JM, Silva RT, Prado D, et al. Alveolar recruitment maneuver in patients with subarachnoid hemorrhage and acute respiratory distress syndrome: a comparison of 2 approaches. J Crit Care. 2011;26(1):22–7.CrossRefGoogle Scholar
  22. 22.
    Theodore J, Robin ED. Pathogenesis of neurogenic pulmonary oedema. Lancet. 1975;2(7938):749–51.CrossRefGoogle Scholar
  23. 23.
    Ott L, McClain CJ, Gillespie M, Young B. Cytokines and metabolic dysfunction after severe head injury. J Neurotrauma. 1994;11(5):447–72.CrossRefGoogle Scholar
  24. 24.
    Yildirim E, Kaptanoglu E, Ozisik K, Beskonakli E, Okutan O, Sargon MF, et al. Ultrastructural changes in pneumocyte type II cells following traumatic brain injury in rats. Eur J Cardiothorac Surg. 2004;25(4):523–9.CrossRefGoogle Scholar
  25. 25.
    Weber DJ, Gracon ASA, Ripsch MS, Fisher AJ, Cheon BM, Pandya PH, et al. The HMGB1-RAGE axis mediates traumatic brain injury-induced pulmonary dysfunction in lung transplantation. Sci Transl Med. 2014;6(252):252ra124.CrossRefGoogle Scholar
  26. 26.
    López-Aguilar J, Villagrá A, Bernabé F, Murias G, Piacentini E, Real J, et al. Massive brain injury enhances lung damage in an isolated lung model of ventilator-induced lung injury. Crit Care Med. 2005;33(5):1077–83.CrossRefGoogle Scholar
  27. 27.
    Elmer J, Hou P, Wilcox SR, Chang Y, Schreiber H, Okechukwu I, et al. Acute respiratory distress syndrome after spontaneous intracerebral hemorrhage. Crit Care Med. 2013;41(8):1992–2001.CrossRefGoogle Scholar
  28. 28.
    Solenski NJ, Haley EC, Kassell NF, Kongable G, Germanson T, Truskowski L, et al. Medical complications of aneurysmal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Participants of the Multicenter Cooperative Aneurysm Study. Crit Care Med. 1995;23(6):1007–17.CrossRefGoogle Scholar
  29. 29.
    Friedman JA, Pichelmann MA, Piepgras DG, McIver JI, Toussaint LG, McClelland RL, et al. Pulmonary complications of aneurysmal subarachnoid hemorrhage. Neurosurgery. 2003;52(5):1025–31; discussion 1031–32.PubMedGoogle Scholar
  30. 30.
    Bratton SL, Davis RL. Acute lung injury in isolated traumatic brain injury. Neurosurgery. 1997;40(4):707–12; discussion 712.CrossRefGoogle Scholar
  31. 31.
    Talman WT, Perrone MH, Reis DJ. Acute hypertension after the local injection of kainic acid into the nucleus tractus solitarii of rats. Circ Res. 1981;48(2):292–8.CrossRefGoogle Scholar
  32. 32.
    Ross CA, Ruggiero DA, Park DH, Joh TH, Sved AF, Fernandez-Pardal J, et al. Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J Neurosci. 1984;4(2):474–94.CrossRefGoogle Scholar
  33. 33.
    Dai S-S, Wang H, Yang N, An J-H, Li W, Ning Y-L, et al. Plasma glutamate-modulated interaction of A2AR and mGluR5 on BMDCs aggravates traumatic brain injury-induced acute lung injury. J Exp Med. 2013;210(4):839–51.CrossRefGoogle Scholar
  34. 34.
    Winklewski PJ, Radkowski M, Demkow U. Cross-talk between the inflammatory response, sympathetic activation and pulmonary infection in the ischemic stroke. J Neuroinflammation. 2014;11:213.CrossRefGoogle Scholar
  35. 35.
    Bickenbach J, Zoremba N, Fries M, Dembinski R, Doering R, Ogawa E, et al. Low tidal volume ventilation in a porcine model of acute lung injury improves cerebral tissue oxygenation. Anesth Analg. 2009;109(3):847–55.CrossRefGoogle Scholar
  36. 36.
    Oddo M, Citerio G. ARDS in the brain-injured patient: what’s different? Intensive Care Med. 2016;42(5):790–3.CrossRefGoogle Scholar
  37. 37.
    Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.CrossRefGoogle Scholar
  38. 38.
    Mielck F, Quintel M. Extracorporeal membrane oxygenation. Curr Opin Crit Care. 2005;11(1):87–93.CrossRefGoogle Scholar
  39. 39.
    Martindale T, McGlone P, Chambers R, Fennell J. Management of severe traumatic brain injury and acute respiratory distress syndrome using pumped extracorporeal carbon dioxide removal device. J Intensive Care Soc. 2017;18(1):66–70.CrossRefGoogle Scholar
  40. 40.
    Wijdicks EFM. The neurology of acutely failing respiratory mechanics. Ann Neurol. 2017;81(4):485–94.CrossRefGoogle Scholar
  41. 41.
    Hassid VJ, Schinco MA, Tepas JJ, Griffen MM, Murphy TL, Frykberg ER, et al. Definitive establishment of airway control is critical for optimal outcome in lower cervical spinal cord injury. J Trauma. 2008;65(6):1328–32.CrossRefGoogle Scholar
  42. 42.
    Cabrera Serrano M, Rabinstein AA. Causes and outcomes of acute neuromuscular respiratory failure. Arch Neurol. 2010;67(9):1089–94.CrossRefGoogle Scholar
  43. 43.
    Serpa Neto A, Hemmes SNT, Barbas CSV, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. Lancet Respir Med. 2014;2(12):1007–15.CrossRefGoogle Scholar
  44. 44.
    Neto AS, Simonis FD, Barbas CSV, Biehl M, Determann RM, Elmer J, et al. Lung-protective ventilation with low tidal volumes and the occurrence of pulmonary complications in patients without acute respiratory distress syndrome: a systematic review and individual patient data analysis. Crit Care Med. 2015;43(10):2155–63.CrossRefGoogle Scholar
  45. 45.
    de Jong MAC, Ladha KS, Melo MFV, Staehr-Rye AK, Bittner EA, Kurth T, et al. Differential effects of intraoperative positive end-expiratory pressure (PEEP) on respiratory outcome in major abdominal surgery versus craniotomy. Ann Surg. 2016;264(2):362–9.CrossRefGoogle Scholar
  46. 46.
    Pelosi P, Ball L, de Abreu MG, Rocco PRM. General anesthesia closes the lungs: keep them resting. Turk J Anaesthesiol Reanim. 2016;44(4):163–4.CrossRefGoogle Scholar
  47. 47.
    Pelosi P, Hedenstierna G, Ball L, Edmark L, Bignami E. The real role of the PEEP in operating room: pros & cons. Minerva Anestesiol. 2018;84(2):229–35.PubMedGoogle Scholar
  48. 48.
    Mure M, Domino KB, Lindahl SG, Hlastala MP, Altemeier WA, Glenny RW. Regional ventilation-perfusion distribution is more uniform in the prone position. J Appl Physiol (1985). 2000;88(3):1076–83.CrossRefGoogle Scholar
  49. 49.
    Pelosi P, Croci M, Calappi E, Cerisara M, Mulazzi D, Vicardi P, et al. The prone positioning during general anesthesia minimally affects respiratory mechanics while improving functional residual capacity and increasing oxygen tension. Anesth Analg. 1995;80(5):955–60.PubMedGoogle Scholar
  50. 50.
    Jo YY, Kim JY, Kwak YL, Kim YB, Kwak HJ. The effect of pressure-controlled ventilation on pulmonary mechanics in the prone position during posterior lumbar spine surgery: a comparison with volume-controlled ventilation. J Neurosurg Anesthesiol. 2012;24(1):14–8.CrossRefGoogle Scholar
  51. 51.
    Fathi A-R, Eshtehardi P, Meier B. Patent foramen ovale and neurosurgery in sitting position: a systematic review. Br J Anaesth. 2009;102(5):588–96.CrossRefGoogle Scholar
  52. 52.
    Feigl GC, Decker K, Wurms M, Krischek B, Ritz R, Unertl K, et al. Neurosurgical procedures in the semisitting position: evaluation of the risk of paradoxical venous air embolism in patients with a patent foramen ovale. World Neurosurg. 2014;81(1):159–64.CrossRefGoogle Scholar
  53. 53.
    Günther F, Frank P, Nakamura M, Hermann EJ, Palmaers T. Venous air embolism in the sitting position in cranial neurosurgery: incidence and severity according to the used monitoring. Acta Neurochir. 2017;159(2):339–46.CrossRefGoogle Scholar
  54. 54.
    Himes BT, Mallory GW, Abcejo AS, Pasternak J, Atkinson JLD, Meyer FB, et al. Contemporary analysis of the intraoperative and perioperative complications of neurosurgical procedures performed in the sitting position. J Neurosurg. 2017;127(1):182–8.CrossRefGoogle Scholar
  55. 55.
    Sakka SG, Wappler F. Operative Intensivmedizin nach neurochirurgischen Eingriffen. In: Wilhelm W, editor. Praxis der Intensivmedizin [Internet]. Berlin: Springer; 2013. pp. 793–803. Accessed 24 May 2018.
  56. 56.
    Bösel J. Use and timing of tracheostomy after severe stroke. Stroke. 2017;48(9):2638–43.CrossRefGoogle Scholar
  57. 57.
    Pelosi P, Ball L, Brunetti I, Vargas M, Patroniti N. Tracheostomy in intensive care: patients and families will never walk alone! Anaesth Crit Care Pain Med. 2018;37(3):197–9.CrossRefGoogle Scholar
  58. 58.
    Vargas M, Sutherasan Y, Antonelli M, Brunetti I, Corcione A, Laffey JG, et al. Tracheostomy procedures in the intensive care unit: an international survey. Crit Care. 2015;19:291.CrossRefGoogle Scholar
  59. 59.
    Bösel J, Schiller P, Hook Y, Andes M, Neumann J-O, Poli S, et al. Stroke-related early tracheostomy versus prolonged orotracheal intubation in neurocritical care trial (SETPOINT): a randomized pilot trial. Stroke. 2013;44(1):21–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Lorenzo Ball
    • 1
  • Denise Battaglini
    • 1
  • Paolo Pelosi
    • 1
  1. 1.Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Policlinico San Martino, IRCCS per l’OncologiaUniversità degli Studi di GenovaGenoaItaly

Personalised recommendations