Multimodal Monitoring in the Neurocritical Care Unit

  • Farhana Akter
  • Chiarra Robba
  • Arun Gupta


Multimodality monitoring of cerebral physiology in neurocritical care patients includes the application of different monitoring techniques and the integration of different measured biochemical and physiologic variables into assessment of brain function. Commonly used monitoring techniques include intracranial pressure, cerebral perfusion pressure, neuroimaging, transcranial Doppler ultrasonography, cerebral oxygenation and brain tissue oxygen tension monitoring, microdialysis, and electroencephalography. The development of these techniques broadened knowledge about brain pathophysiology and cerebral hemodynamics. Moreover, integration of these information enables real-time detection of neurological injury and complications for more precise diagnosis and management of patients with brain injury.


Multimodal monitoring Intracranial pressure Cerebral oxygenation 


  1. 1.
    de Georgia MA, Deogaonkar A. Multimodal monitoring in the neurological intensive care unit. Neurologist. 2005;11:45–54.CrossRefGoogle Scholar
  2. 2.
    Majdan M, Steyerberg EW, Nieboer D, Mauritz W, Rusnak M, Lingsma HF. Glasgow coma scale motor score and pupillary reaction to predict six-month mortality in patients with traumatic brain injury: comparison of field and admission assessment. J Neurotrauma. 2015;32(2):101–8.CrossRefGoogle Scholar
  3. 3.
    Mokri B. The monro-kellie hypothesis: applications in CSF volume depletion. Neurology. 2001;56(12):1746–8.CrossRefGoogle Scholar
  4. 4.
    Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11:10.CrossRefGoogle Scholar
  5. 5.
    McComb JG. Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg. 1983;59:369–83.CrossRefGoogle Scholar
  6. 6.
    Lundberg N. Continuous recording and control of ventricular pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36:1–93.PubMedGoogle Scholar
  7. 7.
    Hawthorne C, Piper I. Monitoring of intracranial pressure in patients with traumatic brain injury. Front Neurol. 2014;5:121.CrossRefGoogle Scholar
  8. 8.
    Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2:161–92.PubMedGoogle Scholar
  9. 9.
    Cipolla MJ. Control of cerebral blood flow. The cerebral circulation. San Rafael: Morgan and Claypool Life Sciences; 2009.Google Scholar
  10. 10.
    Zauner A, Muizelaar JP. Brain metabolism and cerebral blood flow. Head injury. Reilly P, Bullock R (eds.) 1997. Chapman & Hall, London.Google Scholar
  11. 11.
    Zauner A, Daugherty WP, Bullock MR, Warner DS. Brain oxygenation and energy metabolism. Part-I biological function and pathophysiology. Neurosurgery. 2002;51(2):289–301.PubMedGoogle Scholar
  12. 12.
    Treggiari MM, Schutz N, Yanez ND, Romand JA. Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: a systematic review. Neurocrit Care. 2007;6:104–12.CrossRefGoogle Scholar
  13. 13.
    Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367(26):2471–81.CrossRefGoogle Scholar
  14. 14.
    Marmarou A, Saad A, Aygok G, Rigsbee M. Contribution of raised ICP and hypotension to CPP reduction in severe brain injury: correlation to outcome. Acta Neurochir Suppl. 2005;95:277–80.CrossRefGoogle Scholar
  15. 15.
    Narayan RK, Kishore PR, Becker DP, et al. Intracranial pressure: to monitor or not to monitor? A review of our experience with severe head injury. J Neurosurg. 1982;56:650–9.CrossRefGoogle Scholar
  16. 16.
    Prabhakar H, Sandhu K, Bhagat H, Durga P, Chawla R. Current concepts of optimal cerebral perfusion pressure in traumatic brain injury. J Anaesthesiol Clin Pharmacol. 2014;30(3):318–27.CrossRefGoogle Scholar
  17. 17.
    Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J Neurotrauma. 2007;24(Suppl 1):S55–8.CrossRefGoogle Scholar
  18. 18.
    Rosner MJ, Daughton S. Cerebral perfusion pressure management in head injury. J Trauma. 1990;30(8):933–40; discussion 940–1CrossRefGoogle Scholar
  19. 19.
    Clifton GL, Miller ER, Choi SC, Levin HS. Fluid thresholds and outcome from severe brain injury. Crit Care Med. 2002;30:739–45.CrossRefGoogle Scholar
  20. 20.
    Elf K, Nilsson P, Ronne-Engström E, Howells T, Enblad P. Cerebral perfusion pressure between 50 and 60 mmHg may be beneficial in head-injured patients: a computerized secondary insult monitoring study. Neurosurgery. 2005;56(5):962–71.PubMedGoogle Scholar
  21. 21.
    Contant CF, Valadka AB, Gopinath SP, Hannay HJ, Robertson CS. Adult respiratory distress syndrome: a complication of induced hypertension after severe head injury. J Neurosurg. 2001;95:560–8.CrossRefGoogle Scholar
  22. 22.
    Nordstrom CH. Physiological and biochemical principles underlying volume-targeted therapy—the “Lund concept”. Neurocrit Care. 2005;2:83–95.CrossRefGoogle Scholar
  23. 23.
    Dizdarevic K, Hamdan A, Omerhodzic I, Kominlija-Smajic E. Modified Lund concept versus cerebral perfusion pressure-targeted therapy: a randomised controlled study in patients with secondary brain ischaemia. Clin Neurol Neurosurg. 2012;114(2):142–8.CrossRefGoogle Scholar
  24. 24.
    Lassen NA, Ingvar DH. The blood flow of the cerebral cortex determined by radioactive krypton. Experientia. 1961;17:42–3.10.CrossRefGoogle Scholar
  25. 25.
    Williamson C, Morgan L, Klein JP. Imaging in neurocritical care practice. Semin Respir Crit Care Med. 2017;38(6):840–52.CrossRefGoogle Scholar
  26. 26.
    Hoeffner EG, et al. Cerebral perfusion CT: technique and clinical applications. Radiology. 2004;231(3):632–44.CrossRefGoogle Scholar
  27. 27.
    Vajkoczy P, Roth H, Horn P, Luecke T, Thomé C, Huebner U, et al. Continuous monitoring of regional cerebral blood flow—experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg. 2000;93:265–74.CrossRefGoogle Scholar
  28. 28.
    Singh V, McCartnery JP, Hemphill JC. Transcranial Doppler ultrasonography in the neurologic intensive care unit. Neurol India. 2011;49(Suppl 1):S81–9.Google Scholar
  29. 29.
    Kalanuria A, Nyquist PA, Armonda RA, Razumovsky A. Use of Transcranial Doppler (TCD) ultrasound in the neurocritical care unit. Neurosurg Clin N Am. 2013;24(3):441–56.CrossRefGoogle Scholar
  30. 30.
    D’Andrea A, Conte M, Cavallaro M, Scarafile R, Riegler L, Cocchia R, et al. Transcranial Doppler ultrasonography: from methodology to major clinical applications. World J Cardiol. 2016;8(7):383–400.CrossRefGoogle Scholar
  31. 31.
    Olatuni RB, Ogbole GI, Atalabi OM, Adeyinka AO, Lagunju I, Oyinlade A, et al. Role of transcranial colour-coded duplex sonography in stroke management—review article. West Afr J Ultrasound. 2015;16(1):33042.Google Scholar
  32. 32.
    Naqvi J, Yap KH, Ahmad G, Ghosh J. Transcranial Doppler ultrasound: a review of the physical principles and major applications in critical care. Int J Vasc Med. 2013;2013:629378.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Marinoni M, Ginanneschi A, Forleo F, et al. Technical limits in transcranial Doppler recording: inadequate acoustic windows. Ultrasound Med Biol. 1997;23:1275–7.CrossRefGoogle Scholar
  34. 34.
    Meixensberger J, Dings J, Kuhnigk H, Roosen K. Studies of tissue PO2 in normal and pathological human brain cortex. Acta Neurochir Suppl (Wien). 1993;59:58–63.Google Scholar
  35. 35.
    Oddo M, Villa F, Citerio G. Brain multimodality monitoring: an update. Curr Opin Crit Care. 2012;18(2):111–8.CrossRefGoogle Scholar
  36. 36.
    Rosenthal G, Hemphill JC III, Sorani M, Martin C, Morabito D, Obrist WD, et al. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med. 2008;36:1917–24.CrossRefGoogle Scholar
  37. 37.
    Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, et al. Diffusion limited oxygen delivery following head injury. Crit Care Med. 2004;32(6):1384–90.CrossRefGoogle Scholar
  38. 38.
    Maloney-Wilensky E, Gracias V, Itkin A, et al. Brain tissue oxygen and outcome after severe traumatic brain injury: a systematic review. Crit Care Med. 2009;37:2057–63.CrossRefGoogle Scholar
  39. 39.
    Kiening KL, Unterberg AW, Bardt TF, Schneider GH, Lanksch WR. Monitoring cerebral oxygenation in patient with severe head injuries: brain tissue PO2 versus jugular vein oxygen saturation. J Neurosurg. 1996;85:751–7.CrossRefGoogle Scholar
  40. 40.
    Bruzzone P, Diongi R, Bellinzona G, Imberti R, Stocchetti N. Effects of cerebral perfusion pressure on brain tissue PO2 in patients with severe head injury. Acta Neurochir Suppl. 1998;71:111–3.PubMedGoogle Scholar
  41. 41.
    Schneider GH, Sarrafzadeh A, Kiening KL, Bardt TF, Unterberg AW, Lanksch WR. Influence of hyperventilation on brain tissue-PO2, PCO2, and pH in patients with intracranial hypertension. Acta Neurochir Suppl. 1998;71:62–5.PubMedGoogle Scholar
  42. 42.
    Gupta AK, Al-Raw PG, Hutchinson PJ, Kirkpatrick PJ. Effect of hypothermia on brain tissue oxygenation in patients with severe head injury. Br J Anaesth. 2002;88(2):188–92.CrossRefGoogle Scholar
  43. 43.
    Sun H, Zheng M, Wang Y, Diao Y, Zhao W, Wei Z. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment. Neuropsychiatr Dis Treat. 2016;12:2125–9.CrossRefGoogle Scholar
  44. 44.
    Ko S-B. Multimodality monitoring in the neurointensive care unit: a special perspective for patients with stroke. J Stroke. 2013;15(2):99–108.CrossRefGoogle Scholar
  45. 45.
    Dengler J, Frenzel C, Vajkoczy P, Wolf S, Horn P. Cerebral tissue oxygenation measured by two different probes: challenges and interpretation. Intensive Care Med. 2001;37(11):1809–15.CrossRefGoogle Scholar
  46. 46.
    Adamides AA, Cooper DJ, Rosenfeldt FL, Bailey MJ, Pratt N, Tippett N, et al. Focal cerebral oxygenation and neurological outcome with or without brain tissue oxygen-guided therapy in patients with traumatic brain injury. Acta Neurochir. 2009;151(11):1399–409.CrossRefGoogle Scholar
  47. 47.
    Fandino J, Stocker R, Prokop S, Imhof HG. Correlation between jugular bulb oxygen saturation and partial pressure of brain tissue oxygen during CO2 and O2 reactivity tests in severely head-injured patients. Acta Neurochir. 1999;141:825–34.CrossRefGoogle Scholar
  48. 48.
    Wartenberg KE, Schmidt JM, Mayer SA. Multimodality monitoring in neurocritical care. Crit Care Clin. 2007;23(3):507–38.CrossRefGoogle Scholar
  49. 49.
    Cruz J. On-line monitoring of global cerebral hypoxia in acute brain injury. Relationship to intracranial hypertension. J Neurosurg. 1993;79(2):228–33.CrossRefGoogle Scholar
  50. 50.
    Kocsis L, Herman P, Eke A. The modified Beer-Lambert law revisited. Phys Med Biol. 2006;51(5):N91–8.CrossRefGoogle Scholar
  51. 51.
    Springett RJ, Wylezinska M, Cady EB, Hollis V, Cope M, Delpy DT. The oxygen dependency of cerebral oxidative metabolism in the newborn piglet studied with 31P NMRS and NIRS. Adv Exp Med Biol. 2003;530:555–63.CrossRefGoogle Scholar
  52. 52.
    Messerer M, Daniel RT, Oddo M. Neuromonitoring after major neurosurgical procedures. Minerva Anestesiol. 2012;78:810–22.PubMedGoogle Scholar
  53. 53.
    Strangman G, Boas DA, Sutton JP. Non-invasive neuroimaging using near-infrared light. Biol Psychiatry. 2002;52:679–93.CrossRefGoogle Scholar
  54. 54.
    Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage. 2012;63:921–35.CrossRefGoogle Scholar
  55. 55.
    Venclove S, Daktariunas A, Ruksenas O. Functional near-infrared spectroscopy: a continuous wave type based system for human frontal lobe studies. EXCLI J. 2015;14:1145–52.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Misra M, Stark J, Dujovny M, Widman R, Ausman JI. Transcranial cerebral oximetry in random normal subjects. Neurol Res. 1998;20(2):137–41.CrossRefGoogle Scholar
  57. 57.
    Smith M, Elwell C. Near-infrared spectroscopy: shedding light on the injured brain. Anesth Analg. 2009;108:1055–7.CrossRefGoogle Scholar
  58. 58.
    Roh DJ, Morris NA, Claassen J. Intracranial multimodality monitoring for delayed cerebral ischemia. J Clin Neurophysiol. 2016;33(3):241–9.CrossRefGoogle Scholar
  59. 59.
    Hutchinson PJ, Jalloh I, Helmy A. Consensus statement from the 2014 international microdialysis forum. Intensive Care Med. 2015;41(9):1517–28.CrossRefGoogle Scholar
  60. 60.
    Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma. 2005;22(1):3–41; Review.CrossRefGoogle Scholar
  61. 61.
    Hutchinson PJ, Jalloh I, Helmy A, Carpenter KL, Rostami E, Bellander BM, et al. Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med. 2015;41(9):1517–28.CrossRefGoogle Scholar
  62. 62.
    Friedman D, Claassen J, Hirsch LJ. Continuous electroencephalogram monitoring in the intensive care unit. Anesth Analg. 2009;109(2):506–23.CrossRefGoogle Scholar
  63. 63.
    DeLorenzo RJ, Waterhouse EJ, Towne AR. Persistent nonconvulsive status epilepticus after the control of convulsive status epilepticus. Epilepsia. 1998;39(8):833–40.CrossRefGoogle Scholar
  64. 64.
    Koufen H, Dichgans J. Frequency and course of posttraumatic EEG-abnormalities and their correlations with clinical symptoms: a systematic follow up study in 344 adults. Fortschr Neurol Psychiatr Grenzgeb. 1978;46:165–77.PubMedGoogle Scholar
  65. 65.
    Tasneem N, Samaniego EA, Pieper C, Leira EC, Adams HP, Hasan D, et al. Brain multimodality monitoring: a new tool in neurocritical care of comatose patients. Crit Care Res Prac. 2017;2017:6097265.Google Scholar
  66. 66.
    Stuart RM, Waziri A, Weintraub D. Intracortical EEG for the detection of vasospasm in patients with poor-grade sub- arachnoid hemorrhage. Neurocrit Care. 2010;13(3):355–8.CrossRefGoogle Scholar
  67. 67.
    Roh D, Park S. Brain multimodality monitoring: updated perspectives. Curr Neurol Neurosci Rep. 2016;16(6):56.CrossRefGoogle Scholar
  68. 68.
    Haneef Z, Levin HS, Frost JD, Mizrahi EM. Electroencephalography and quantitative electroencephalography in mild traumatic brain injury. J Neurotrauma. 2013;30(8):653–6.CrossRefGoogle Scholar
  69. 69.
    Ianof J, Anghinah R. Traumatic brain injury: an EEG point of view. Dement Neuropsychol. 2017;11(1):3–5.CrossRefGoogle Scholar
  70. 70.
    Rosenthal ES. The utility of EEG, SSEP, and other neurophysiologic tools to guide neurocritical care. Neurotherapeutics. 2012;9(1):24–36.CrossRefGoogle Scholar
  71. 71.
    Christophis P. The prognostic value of somatosensory evoked potentials in traumatic primary and secondary brain stem lesions. Zentralbl Neurochir. 2004;65:25–31.CrossRefGoogle Scholar
  72. 72.
    Moulton RJ, Shedden PM, Tucker WS, Muller PJ. Somatosensory evoked potential monitoring following severe closed head injury. Clin Invest Med. 1994;17:187–95.PubMedGoogle Scholar
  73. 73.
    Robinson LR, Micklesen PJ, Tirschwell DL, Lew HL. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med. 2003;31:960–7.CrossRefGoogle Scholar
  74. 74.
    Houlden D, Taylor A, Feinstein A, Midha R, Bethune A, Stewart C, Schwartz M. Early somatosensory evoked potential grades in comatose traumatic brain injury patients predict cognitive and functional outcome. Crit Care Med. 2010;38:167–74.Google Scholar
  75. 75.
    Taniguchi M, Nadstawek J, Pechstein U, Schramm J. Total intravenous anesthesia for improvement of intraoperative monitoring of somatosensory evoked potentials during aneurysm surgery. Neurosurgery. 1992;31(5):891–7.CrossRefGoogle Scholar
  76. 76.
    Cruccu G, Aminoff MJ, Curio G. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol. 2008;119:1705–19.CrossRefGoogle Scholar
  77. 77.
    Amantini A, Fossi S, Grippo A, et al. Continuous EEG-SSEP monitoring in severe brain injury. Clin Neurophysiol. 2009;39:85–93.CrossRefGoogle Scholar
  78. 78.
    Zandbergen EGJ, Hijdra A, de Haan RJ. Interobserver variation in the interpretation of SSEPs in anoxic-ischaemic coma. Clin Neurophysiol. 2006;117:1529–35.CrossRefGoogle Scholar
  79. 79.
    Guérit JM, Amantini A, Amodio P, Andersen KV, Butler S, de Weerd A, et al. Consensus on the use of neurophysiological tests in the intensive care unit (ICU): electroencephalogram (EEG), evoked potentials (EP), and electroneuromyography (ENMG). Neurophysiol Clin. 2009;39(2):71–83.CrossRefGoogle Scholar
  80. 80.
    Cloostermans MC, Horn J, van Putten MJAM. The SSEP on the ICU: current applications and pitfalls. Netherlands J Crit Care. 2013;17(1):5–9.Google Scholar
  81. 81.
    Okonkwo DO, Shuuter LA, Moore C, Temkin NR, Puccio AM, Madden CJ, et al. Brain oxygen optimization in severe traumatic brain injury phase-II: a phase II randomized trial. Crit Care Med. 2017;45(11):1907–14.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Farhana Akter
    • 1
  • Chiarra Robba
    • 1
  • Arun Gupta
    • 1
  1. 1.Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK

Personalised recommendations