Advertisement

Anesthesia for Aneurysmal Subarachnoid Hemorrhage

  • Nicolas BruderEmail author
  • Salah Boussen
  • Lionel Velly
Chapter

Abstract

Anesthesia for aneurysmal subarachnoid hemorrhage is particularly challenging for the anesthetist. It is an emergency procedure that has to be performed as soon as possible to prevent aneurysm rerupture, in patients who may have multiple organ dysfunction. In good-grade patients (Glasgow coma score 13–15), the main objective is to prevent rebleeding by achieving hemodynamic stability both for surgery and interventional neuroradiology. Bad-grade patients (Glasgow coma score 3–12) usually have moderate to severe intracranial hypertension. The margin of safety between a too high blood pressure leading to aneurysm rupture and a low blood pressure inducing cerebral ischemia is narrow. In addition, these patients often have some degree of myocardial or pulmonary dysfunction. Thus, invasive hemodynamic monitoring is indicated in all patients. This allows rapid treatment of hypertensive or hypotensive events. After anesthesia, early neurologic assessment is important to detect any complication associated with the procedure, before transfer to the intensive care unit.

Keywords

Subarachnoid hemorrhage Anesthesia Neurosurgery Interventional neuroradiology Cerebral ischemia Perioperative management 

References

  1. 1.
    Stevens RD, Naval NS, Mirski MA, Citerio G, Andrews PJ. Intensive care of aneurysmal subarachnoid hemorrhage: an international survey. Intensive Care Med. 2009;35(9):1556–66.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Velly LJ, Bilotta F, Fabregas N, Soehle M, Bruder NJ, Nathanson MH. Anaesthetic and ICU management of aneurysmal subarachnoid haemorrhage: a survey of European practice. Eur J Anaesthesiol. 2015;32(3):168–76.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Boogaarts HD, van Amerongen MJ, de Vries J, Westert GP, Verbeek AL, Grotenhuis JA, et al. Caseload as a factor for outcome in aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Neurosurg. 2014;120(3):605–11.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Pandey AS, Gemmete JJ, Wilson TJ, Chaudhary N, Thompson BG, Morgenstern LB, et al. High subarachnoid hemorrhage patient volume associated with lower mortality and better outcomes. Neurosurgery. 2015;77(3):462–70.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Rush B, Romano K, Ashkanani M, McDermid RC, Celi LA. Impact of hospital case-volume on subarachnoid hemorrhage outcomes: a nationwide analysis adjusting for hemorrhage severity. J Crit Care. 2017;37:240–3.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Nieuwkamp DJ, Setz LE, Algra A, Linn FH, de Rooij NK, Rinkel GJ. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol. 2009;8(7):635–42.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Mukhtar TK, Molyneux AJ, Hall N, Yeates DR, Goldacre R, Sneade M, et al. The falling rates of hospital admission, case fatality, and population-based mortality for subarachnoid hemorrhage in England, 1999-2010. J Neurosurg. 2016;125(3):698–704.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Mackey J, Khoury JC, Alwell K, Moomaw CJ, Kissela BM, Flaherty ML, et al. Stable incidence but declining case-fatality rates of subarachnoid hemorrhage in a population. Neurology. 2016;87(21):2192–7.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Vergouwen MD, Jong-Tjien-Fa AV, Algra A, Rinkel GJ. Time trends in causes of death after aneurysmal subarachnoid hemorrhage: a hospital-based study. Neurology. 2016;86(1):59–63.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Rosengart AJ, Schultheiss KE, Tolentino J, Macdonald RL. Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2007;38(8):2315–21.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol. 2011;10(7):618–25.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol. 2014;10(1):44–58.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Claassen J, Bernardini GL, Kreiter K, Bates J, Du YE, Copeland D, et al. Effect of cisternal and ventricular blood on risk of delayed cerebral ischemia after subarachnoid hemorrhage: the fisher scale revisited. Stroke. 2001;32(9):2012–20.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Lee VH, Ouyang B, John S, Conners JJ, Garg R, Bleck TP, et al. Risk stratification for the in-hospital mortality in subarachnoid hemorrhage: the HAIR score. Neurocrit Care. 2014;21(1):14–9.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Degos V, Apfel CC, Sanchez P, Colonne C, Renuit I, Clarencon F, et al. An admission bioclinical score to predict 1-year outcomes in patients undergoing aneurysm coiling. Stroke. 2012;43(5):1253–9.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Suwatcharangkoon S, Meyers E, Falo C, Schmidt JM, Agarwal S, Claassen J, et al. Loss of consciousness at onset of subarachnoid hemorrhage as an important marker of early brain injury. JAMA Neurol. 2016;73(1):28–35.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hallevi H, Dar NS, Barreto AD, Morales MM, Martin-Schild S, Abraham AT, et al. The IVH score: a novel tool for estimating intraventricular hemorrhage volume: clinical and research implications. Crit Care Med. 2009;37(3):969–74, e1.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hijdra A, Brouwers PJ, Vermeulen M, van Gijn J. Grading the amount of blood on computed tomograms after subarachnoid hemorrhage. Stroke. 1990;21(8):1156–61.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Varsos GV, Richards HK, Kasprowicz M, Reinhard M, Smielewski P, Brady KM, et al. Cessation of diastolic cerebral blood flow velocity: the role of critical closing pressure. Neurocrit Care. 2014;20(1):40–8.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Budohoski KP, Czosnyka M, Kirkpatrick PJ, Reinhard M, Varsos GV, Kasprowicz M, et al. Bilateral failure of cerebral autoregulation is related to unfavorable outcome after subarachnoid hemorrhage. Neurocrit Care. 2015;22(1):65–73.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Cropp GJ, Manning GW. Electrocardiographic changes simulating myocardial ischemia and infarction associated with spontaneous intracranial hemorrhage. Circulation. 1960;22:25–38.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Wartenberg KE, Schmidt JM, Claassen J, Temes RE, Frontera JA, Ostapkovich N, et al. Impact of medical complications on outcome after subarachnoid hemorrhage. Crit Care Med. 2006;34(3):617–23.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Bruder N, Rabinstein A. Cardiovascular and pulmonary complications of aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2011;15(2):257–69.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Katayama Y, Haraoka J, Hirabayashi H, Kawamata T, Kawamoto K, Kitahara T, et al. A randomized controlled trial of hydrocortisone against hyponatremia in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2007;38(8):2373–5.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kruyt ND, Biessels GJ, DeVries JH, Luitse MJ, Vermeulen M, Rinkel GJ, et al. Hyperglycemia in aneurysmal subarachnoid hemorrhage: a potentially modifiable risk factor for poor outcome. J Cereb Blood Flow Metab. 2010;30(9):1577–87.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bilotta F, Spinelli A, Giovannini F, Doronzio A, Delfini R, Rosa G. The effect of intensive insulin therapy on infection rate, vasospasm, neurologic outcome, and mortality in neurointensive care unit after intracranial aneurysm clipping in patients with acute subarachnoid hemorrhage: a randomized prospective pilot trial. J Neurosurg Anesthesiol. 2007;19(3):156–60.PubMedCrossRefGoogle Scholar
  27. 27.
    Latorre JG, Chou SH, Nogueira RG, Singhal AB, Carter BS, Ogilvy CS, et al. Effective glycemic control with aggressive hyperglycemia management is associated with improved outcome in aneurysmal subarachnoid hemorrhage. Stroke. 2009;40(5):1644–52.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Patet C, Quintard H, Zerlauth JB, Maibach T, Carteron L, Suys T, et al. Bedside cerebral microdialysis monitoring of delayed cerebral hypoperfusion in comatose patients with poor grade aneurysmal subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 2017;88(4):332–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Helbok R, Schmidt JM, Kurtz P, Hanafy KA, Fernandez L, Stuart RM, et al. Systemic glucose and brain energy metabolism after subarachnoid hemorrhage. Neurocrit Care. 2010;12(3):317–23.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Galea JP, Dulhanty L, Patel HC. Predictors of outcome in aneurysmal subarachnoid hemorrhage patients: observations from a multicenter data set. Stroke. 2017;48(11):2958–63.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Ohkuma H, Ogane K, Tanaka M, Suzuki S. Assessment of cerebral microcirculatory changes during cerebral vasospasm by analyzing cerebral circulation time on DSA images. Acta Neurochir Suppl. 2001;77:127–30.PubMedPubMedCentralGoogle Scholar
  32. 32.
    van Donkelaar CE, Bakker NA, Veeger NJ, Uyttenboogaart M, Metzemaekers JD, Luijckx GJ, et al. Predictive factors for rebleeding after aneurysmal subarachnoid hemorrhage: rebleeding aneurysmal subarachnoid hemorrhage study. Stroke. 2015;46(8):2100–6.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Park J, Woo H, Kang DH, Kim YS, Kim MY, Shin IH, et al. Formal protocol for emergency treatment of ruptured intracranial aneurysms to reduce in-hospital rebleeding and improve clinical outcomes. J Neurosurg. 2015;122(2):383–91.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    de Oliveira Manoel AL, Mansur A, Silva GS, Germans MR, Jaja BN, Kouzmina E, et al. Functional outcome after poor-grade subarachnoid hemorrhage: a single-center study and systematic literature review. Neurocrit Care. 2016;25(3):338–50.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Inamasu J, Nakae S, Ohmi T, Kogame H, Kawazoe Y, Kumai T, et al. The outcomes of early aneurysm repair in World Federation of Neurosurgical Societies grade V subarachnoid haemorrhage patients with emphasis on those presenting with a Glasgow coma scale score of 3. J Clin Neurosci. 2016;33:142–7.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Chang HS, Hongo K, Nakagawa H. Adverse effects of limited hypotensive anesthesia on the outcome of patients with subarachnoid hemorrhage. J Neurosurg. 2000;92(6):971–5.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Hitchcock ER, Tsementzis SA, Dow AA. Short- and long-term prognosis of patients with a subarachnoid haemorrhage in relation to intra-operative period of hypotension. Acta Neurochir. 1984;70(3–4):235–42.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Mutoh T, Kazumata K, Ishikawa T, Terasaka S. Performance of bedside transpulmonary thermodilution monitoring for goal-directed hemodynamic management after subarachnoid hemorrhage. Stroke. 2009;40(7):2368–74.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Mutoh T, Kazumata K, Terasaka S, Taki Y, Suzuki A, Ishikawa T. Early intensive versus minimally invasive approach to postoperative hemodynamic management after subarachnoid hemorrhage. Stroke. 2014;45(5):1280–4.CrossRefGoogle Scholar
  40. 40.
    Matta BF, Lam AM, Mayberg TS, Shapira Y, Winn HR. A critique of the intraoperative use of jugular venous bulb catheters during neurosurgical procedures. Anesth Analg. 1994;79(4):745–50.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Clavier N, Schurando P, Raggueneau JL, Payen DM. Continuous jugular bulb venous oxygen saturation validation and variations during intracranial aneurysm surgery. J Crit Care. 1997;12(3):112–9.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Ter Minassian A, Poirier N, Pierrot M, Menei P, Granry JC, Ursino M, et al. Correlation between cerebral oxygen saturation measured by near-infrared spectroscopy and jugular oxygen saturation in patients with severe closed head injury. Anesthesiology. 1999;91(4):985–90.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Rozet I, Tontisirin N, Muangman S, Vavilala MS, Souter MJ, Lee LA, et al. Effect of equiosmolar solutions of mannitol versus hypertonic saline on intraoperative brain relaxation and electrolyte balance. Anesthesiology. 2007;107(5):697–704.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Gelb AW, Craen RA, Rao GS, Reddy KR, Megyesi J, Mohanty B, et al. Does hyperventilation improve operating condition during supratentorial craniotomy? A multicenter randomized crossover trial. Anesth Analg. 2008;106(2):585–94.CrossRefGoogle Scholar
  45. 45.
    Matta BF, Mayberg TS, Lam AM. Direct cerebrovasodilatory effects of halothane, isoflurane, and desflurane during propofol-induced isoelectric electroencephalogram in humans. Anesthesiology. 1995;83(5):980–5.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Matta BF, Heath KJ, Tipping K, Summors AC. Direct cerebral vasodilatory effects of sevoflurane and isoflurane. Anesthesiology. 1999;91(3):677–80.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Pasternak JJ, McGregor DG, Lanier WL, Schroeder DR, Rusy DA, Hindman B, et al. Effect of nitrous oxide use on long-term neurologic and neuropsychological outcome in patients who received temporary proximal artery occlusion during cerebral aneurysm clipping surgery. Anesthesiology. 2009;110(3):563–73.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Maurtua MA, Deogaonkar A, Bakri MH, Mascha E, Na J, Foss J, et al. Dosing of remifentanil to prevent movement during craniotomy in the absence of neuromuscular blockade. J Neurosurg Anesthesiol. 2008;20(4):221–5.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369(5):428–37.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Biehl M, Binnekade JM, et al. Protective versus conventional ventilation for surgery: a systematic review and individual patient data meta-analysis. Anesthesiology. 2015;123(1):66–78.PubMedCrossRefGoogle Scholar
  51. 51.
    Hemmes SN, Gama de Abreu M, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet. 2014;384(9942):495–503.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ferrando C, Soro M, Unzueta C, Suarez-Sipmann F, Canet J, Librero J, et al. Individualised perioperative open-lung approach versus standard protective ventilation in abdominal surgery (iPROVE): a randomised controlled trial. Lancet Respir Med. 2018;6(3):193–203.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Neto AS, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4(4):272–80.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Boone MD, Jinadasa SP, Mueller A, Shaefi S, Kasper EM, Hanafy KA, et al. The effect of positive end-expiratory pressure on intracranial pressure and cerebral hemodynamics. Neurocrit Care. 2017;26(2):174–81.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Muench E, Bauhuf C, Roth H, Horn P, Phillips M, Marquetant N, et al. Effects of positive end-expiratory pressure on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation. Crit Care Med. 2005;33(10):2367–72.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Tankisi A, Rasmussen M, Juul N, Cold GE. The effects of 10 degrees reverse Trendelenburg position on subdural intracranial pressure and cerebral perfusion pressure in patients subjected to craniotomy for cerebral aneurysm. J Neurosurg Anesthesiol. 2006;18(1):11–7.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Lee JM, Bahk JH, Lim YJ, Lee J, Lim L. The EC90 of remifentanil for blunting cardiovascular responses to head fixation for neurosurgery under total intravenous anesthesia with propofol and remifentanil based on bispectral index monitoring: estimation with the biased coin up-and-down sequential method. BMC Anesthesiol. 2017;17(1):136.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bayer-Berger MM, Ravussin P, Fankhauser H, Freeman J. Effect of three pretreatment techniques on hemodynamic and CSFP responses to skull-pin head-holder application during thiopentone/isoflurane or propofol anesthesia. J Neurosurg Anesthesiol. 1989;1(3):227–32.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Malinova V, Schatlo B, Voit M, Suntheim P, Rohde V, Mielke D. The impact of temporary clipping during aneurysm surgery on the incidence of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2017;15:1–7.Google Scholar
  60. 60.
    Lavine SD, Masri LS, Levy ML, Giannotta SL. Temporary occlusion of the middle cerebral artery in intracranial aneurysm surgery: time limitation and advantage of brain protection. J Neurosurg. 1997;87(6):817–24.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Ogilvy CS, Carter BS, Kaplan S, Rich C, Crowell RM. Temporary vessel occlusion for aneurysm surgery: risk factors for stroke in patients protected by induced hypothermia and hypertension and intravenous mannitol administration. J Neurosurg. 1996;84(5):785–91.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kett-White R, Hutchinson PJ, Al-Rawi PG, Czosnyka M, Gupta AK, Pickard JD, et al. Cerebral oxygen and microdialysis monitoring during aneurysm surgery: effects of blood pressure, cerebrospinal fluid drainage, and temporary clipping on infarction. J Neurosurg. 2002;96(6):1013–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Todd MM, Hindman BJ, Clarke WR, Torner JC. Mild intraoperative hypothermia during surgery for intracranial aneurysm. N Engl J Med. 2005;352(2):135–45.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hindman BJ, Bayman EO, Pfisterer WK, Torner JC, Todd MM. No association between intraoperative hypothermia or supplemental protective drug and neurologic outcomes in patients undergoing temporary clipping during cerebral aneurysm surgery: findings from the intraoperative hypothermia for aneurysm surgery trial. Anesthesiology. 2010;112(1):86–101.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Stendel R, Pietila T, Al Hassan AA, Schilling A, Brock M. Intraoperative microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurol Neurosurg Psychiatry. 2000;68(1):29–35.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Nishiyama Y, Kinouchi H, Senbokuya N, Kato T, Kanemaru K, Yoshioka H, et al. Endoscopic indocyanine green video angiography in aneurysm surgery: an innovative method for intraoperative assessment of blood flow in vasculature hidden from microscopic view. J Neurosurg. 2012;117(2):302–8.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Sharma M, Ambekar S, Ahmed O, Nixon M, Sharma A, Nanda A, et al. The utility and limitations of intraoperative near-infrared indocyanine green videoangiography in aneurysm surgery. World Neurosurg. 2014;82(5):e607–13.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Al-Mousa A, Bose G, Hunt K, Toma AK. Adenosine-assisted neurovascular surgery: initial case series and review of literature. Neurosurg Rev. 2017:1–8. https://doi.org/10.1007/s10143-017-0883-3PubMedCrossRefGoogle Scholar
  69. 69.
    Kassell NF, Torner JC, Jane JA, Haley EC Jr, Adams HP. The international cooperative study on the timing of aneurysm surgery. Part 2: surgical results. J Neurosurg. 1990;73(1):37–47.PubMedCrossRefGoogle Scholar
  70. 70.
    Elijovich L, Higashida RT, Lawton MT, Duckwiler G, Giannotta S, Johnston SC. Predictors and outcomes of intraprocedural rupture in patients treated for ruptured intracranial aneurysms: the CARAT study. Stroke. 2008;39(5):1501–6.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Leipzig TJ, Morgan J, Horner TG, Payner T, Redelman K, Johnson CS. Analysis of intraoperative rupture in the surgical treatment of 1694 saccular aneurysms. Neurosurgery. 2005;56(3):455–68.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Batjer H, Samson D. Intraoperative aneurysmal rupture: incidence, outcome, and suggestions for surgical management. Neurosurgery. 1986;18(6):701–7.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Molyneux A, Kerr R, Stratton I, Sandercock P, Clarke M, Shrimpton J, et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet. 2002;360(9342):1267–74.PubMedCrossRefGoogle Scholar
  74. 74.
    Doerfler A, Wanke I, Egelhof T, Dietrich U, Asgari S, Stolke D, et al. Aneurysmal rupture during embolization with Guglielmi detachable coils: causes, management, and outcome. AJNR Am J Neuroradiol. 2001;22(10):1825–32.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Murayama Y, Nien YL, Duckwiler G, Gobin YP, Jahan R, Frazee J, et al. Guglielmi detachable coil embolization of cerebral aneurysms: 11 years’ experience. J Neurosurg. 2003;98(5):959–66.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Vanninen R, Koivisto T, Saari T, Hernesniemi J, Vapalahti M. Ruptured intracranial aneurysms: acute endovascular treatment with electrolytically detachable coils--a prospective randomized study. Radiology. 1999;211(2):325–36.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Cloft HJ, Kallmes DF. Cerebral aneurysm perforations complicating therapy with Guglielmi detachable coils: a meta-analysis. AJNR Am J Neuroradiol. 2002;23(10):1706–9.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Pierot L, Cognard C, Anxionnat R, Ricolfi F. Ruptured intracranial aneurysms: factors affecting the rate and outcome of endovascular treatment complications in a series of 782 patients (CLARITY study). Radiology. 2010;256(3):916–23.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Qureshi AI, Luft AR, Sharma M, Guterman LR, Hopkins LN. Prevention and treatment of thromboembolic and ischemic complications associated with endovascular procedures: part II--clinical aspects and recommendations. Neurosurgery. 2000;46(6):1360–75.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Ries T, Buhk JH, Kucinski T, Goebell E, Grzyska U, Zeumer H, et al. Intravenous administration of acetylsalicylic acid during endovascular treatment of cerebral aneurysms reduces the rate of thromboembolic events. Stroke. 2006;37(7):1816–21.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Hahnel S, Schellinger PD, Gutschalk A, Geletneky K, Hartmann M, Knauth M, et al. Local intra-arterial fibrinolysis of thromboemboli occurring during neuroendovascular procedures with recombinant tissue plasminogen activator. Stroke. 2003;34(7):1723–8.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Brinjikji W, Morales-Valero SF, Murad MH, Cloft HJ, Kallmes DF. Rescue treatment of thromboembolic complications during endovascular treatment of cerebral aneurysms: a meta-analysis. AJNR Am J Neuroradiol. 2015;36(1):121–5.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology and Intensive CareCHU Timone, AP-HM, Aix-Marseille UniversityMarseilleFrance

Personalised recommendations