Advertisement

Anesthesia for Supratentorial Brain Tumor (SBT)

  • Fenghua LiEmail author
  • Reza Gorji
Chapter

Abstract

Supratentorial craniotomy is performed for a variety of indications. The supratentorial region of the brain is the area overlying the tentorium cerebelli. It contains two cerebral hemispheres separated by the falx cerebri. Each hemisphere in turn is subdivided into four lobes which are the frontal, parietal, temporal, and occipital. Other supratentorial contents include the basal ganglia, thalamic nuclei, lateral ventricles, hypothalamus, and corpus callosum. Lesions in the supratentorial lesion are broad based. This chapter will focus on the treatment of tumors in the supratentorial region in adults. Other causes for a craniotomy are discussed in subsequent chapters throughout the book. These include endocrine tumors, treatment of epidural and subdural hematomas, traumatic brain injury, and intracranial vascular lesions including aneurysms and other vascular malformations. In this chapter, we discuss the unique challenges of a supratentorial craniotomy for supratentorial brain tumor (SBT) for the anesthesiologist. While there are common themes with infratentorial craniotomies, a unique set of principle apply to this procedure and location which must be understood in order to provide safe and state-of-the-art care to the neurosurgical patient.

Keywords

Supratentorial craniotomy Tentorium cerebelli Supratentorial brain tumor Anesthetic management 

References

  1. 1.
    Louis DN, Perry A, Reifenberger G, et al. The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neurppathol. 2016;131:803–20.CrossRefGoogle Scholar
  2. 2.
    Kohler BA, Ward E, McCarthy BJ, Schymura MJ, Ries LA, Eheman C, Jemal A, Anderson RN, Ajani UA, Edwards BK. Annual report to the nation on the status of cancer, 1975-2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst. 2011;103(9):714.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS. Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH USA central brain tumor registry of the United States, Hinsdale, IL USA. Neuro-Oncology. 2015;17(Suppl 4):iv1–62.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Atlas S. Adult supratentorial tumors. Semin Roentgenol. 1990;25(2):130–54.PubMedCrossRefGoogle Scholar
  5. 5.
    Di Rocco C, Iannelli A. Intracranial supratentorial tumors: classification, clinical findings, surgical management. Rays. 1996;21(1):9–25.PubMedGoogle Scholar
  6. 6.
    Vijapura C, Saad Aldin E, Capizzano AA, Policeni B, Sato Y, Moritani T. Genetic syndromes associated with central nervous system tumors. Radiographics. 2017;37(1):258–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Shakir SI, Souhami L, Petrecca K, Mansure JJ, Singh K, Panet-Raymond V, et al. Prognostic factors for progression in atypical meningioma. J Neurosurg. 2018;129:1–9.CrossRefGoogle Scholar
  8. 8.
    Reilly KM. Brain tumor susceptibility: the role of genetic factors and uses of mouse models to unravel risk. Brain Pathol. 2009;19(1):121–31.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mack EE, Wilson CB. Meningiomas induced by high-dose cranial irradiation. J Neurosurg. 1993;79:28–31.PubMedCrossRefGoogle Scholar
  10. 10.
    Harrison MJ, Wolfe DE, Lau TS, et al. Radiation-induced meningiomas: experience at the Mount Sinai hospital and review of the literature. J Neurosurg. 1991;75:564–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Annegers JF, Laws ER Jr, Kurland LT, Grabow JD. Head trauma and subsequent brain tumors. Neurosurgery. 1979;4:203–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Davies SJ. Preoperative optimization of the high-risk surgical patient. Br J Anaesth. 2004;93(1):121–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Tote SP, Grounds RM. Performing perioperative optimization of the high-risk surgical patient. Br J Anaesth. 2006;97(1):4–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Menke H, John KD, Klein A, Lorenz W, Junginger T. Preoperative risk assessment with the ASA classification. A prospective study of morbidity and mortality in various ASA classes in 2,937 patients in general surgery. Chir Z Für Alle Geb Oper Medizen. 1992;63(12):1029–34.Google Scholar
  15. 15.
    Sankar A, Johnson SR, Beattie WS, Tait G, Wijeysundera DN. Reliability of the American Society of Anesthesiologists physical status scale in clinical practice. Br J Anaesth. 2014;113:424–32.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Owens WD, Felts JA, Spitznagel EL. ASA physical status classifications: a study of consistency of ratings. Anesthesiology. 1978;49(4):239–43.PubMedCrossRefGoogle Scholar
  17. 17.
    Wallace MD, Metzger NL. Optimizing the treatment of steroid-induced hyperglycemia. Ann Pharmacother. 2017;52(1):86–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Okuda T, Sugahara S, Oshima T, Sato T. A patient for craniotomy with ECG abnormality occurring on admission to the operating room. Masui. 2000;49(4):425–7.PubMedGoogle Scholar
  19. 19.
    Himes BT, Mallory GW, Abcejo AS, Pasternak J, Atkinson JLD, Meyer FB, et al. Contemporary analysis of the intraoperative and perioperative complications of neurosurgical procedures performed in the sitting position. J Neurosurg. 2017;127(1):182–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Wilson MH. Monro-Kellie 2.0. The dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36(8):1338–50.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Fishman RA. Brain edema. N Engl J Med. 1975;293:706–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Sharma D, Bithal PK, Dash HH, Chouhan RS, Sookplung P, Vavilala MS. Cerebral autoregulation and CO2 reactivity before and after elective supratentorial tumor resection. J Neurosurg Anesthesiol. 2010;22(2):132–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Chui J, Mariappan R, Mehta J, Manninen P, Venkatraghavan L. Comparison of propofol and volatile agents for maintenance of anesthesia during elective craniotomy procedures: systematic review and meta-analysis. Can J Anaesth. 2014;61(4):347–56.PubMedCrossRefGoogle Scholar
  24. 24.
    Cremer OL, Moons KG, Bouman EA, et al. Long-term propofol infusion and cardiac failure in adult-injured patients. Lancet. 2001;357:117–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Cannon ML, Glazier SS, Bauman LA. Metabolic acidosis, rhabodomyolysis, and cardiovascular collapse after prolonged propofol infusion. J Neurosurg. 2001;95:1053–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Grosslight K, Foster R, Colohan AR, et al. Isoflurane for neuroanesthesia: risk factors for increases in intracranial pressure. Anesthesiology. 1985;63:533–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Petersen KD, Landsfeldt L, Cold GE, et al. Intracranial pressure and cerebral hemodynamic in patients with cerebral tumors: a randomized prospective study of patients subjected to craniotomy in propofol-fentanyl, isoflurane-fentanyl, or sevoflurane- fentanyl anesthesia. Anesthesiology. 2003;98:329–36.PubMedCrossRefGoogle Scholar
  28. 28.
    Tameen A, Krovvidi H. Cerebral physiology. Br J Anaesth. 2013;13:113–8.Google Scholar
  29. 29.
    Butler AR, Passalaqua AM, Berenstein A, Kricheff II. Contrast enhanced CT scan and radionuclide brain scan in supratentorial gliomas. Am J Roentgenol. 1979;132:607–11.CrossRefGoogle Scholar
  30. 30.
    Fidler IJ, Yano S, Zhang RD, Fujimaki T, Bucana CD. The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol. 2002;3(1):53–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Fidler IJ. The role of the organ microenvironment in brain metastasis. Semin Cancer Biol. 2011;21(2):107–12.PubMedCrossRefGoogle Scholar
  32. 32.
    Fidler IJ. The biology of brain metastasis: challenges for therapy. Cancer J. 2015;21(4):284–93.PubMedCrossRefGoogle Scholar
  33. 33.
    On NH, Mitchell R, Savant SD, Bachmeier CJ, Hatch GM, Miller DW. Examination of blood-brain barrier (BBB) integrity in a mouse brain tumor model. J Neuro-Oncol. 2013;111(2):133–43.CrossRefGoogle Scholar
  34. 34.
    Vecht C, Royer-Perron L, Houillier C, Huberfeld G. Seizures and anticonvulsants in brain Tumours: frequency, mechanisms and anti-epileptic management. Curr Pharm Des. 2017;23(42):6464–87.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Liubinas SV, O’Brien TJ, Moffat BM, Drummond KJ, Morokoff AP, Kaye AH. Tumour associated epilepsy and glutamate excitotoxicity in patients with gliomas. J Clin Neurosci. 2014;21:899–908.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S, Ogunrinu T, et al. Glutamate release by primary brain tumors induces epileptic activity. Nat Med. 2011;17:1269.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ambrosi M, Orsini A, Verrotti A, Striano P. Medical management for neurosurgical related seizures. Expert Opin Pharmacother. 2017;18(14):1491–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Wali AR, Rennert RC, Wang SG, Chen CC. Prophylactic anticonvulsants in patients with primary glioblastoma. J Neuro-Oncol. 2017;135(2):229–35.CrossRefGoogle Scholar
  39. 39.
    Cardona AF, Rojas L, Wills B, Bernal L, Ruiz-Patiño A, Arrieta O, et al. Efficacy and safety of Levetiracetam vs. other antiepileptic drugs in Hispanic patients with glioblastoma. J Neuro-Oncol. 2017;136(2):363–71.CrossRefGoogle Scholar
  40. 40.
    Lin N, Han R, Zhou J, et al. Mild sedation exacerbates or unmasks focal neurologic dysfunction in neurosurgical patients with supratentorial brain mass lesions in a drug-specific manner. Anesthesiology. 2016;124:598–607.PubMedCrossRefGoogle Scholar
  41. 41.
    Howe J, Lu X, Thompson Z, Peterson GW, Losey TE. Intraoperative seizure during craniotomy under general anesthesia. Seizure. 2016;38:23–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Conte V, Carrabba G, Magni L, et al. Risk of perioperative seizure in patients undergoing craniotomy with intraoperative mapping. Minerva Anestesiol. 2015;81:379–88.PubMedGoogle Scholar
  43. 43.
    Nossek E, Matot I, Shahar T, et al. Intraoperative seizure during awake craniotomy: incidence and consequences: analysis of 477 patients. Neurosurgery. 2013;73:135–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Nossek E, Matot I, Sharhar T, et al. Failed awake craniotomy: a retrospective analysis in 424 patients undergoing craniotomy for brain tumor. J Neurosurg. 2013;118:243–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Moppet IK, Mahajan RP. Transcranial Doppler ultrasonography in anesthesia and intensive care. Br J Anaesth. 2004;93:710–24.CrossRefGoogle Scholar
  46. 46.
    Badenes R, Carcia-Perez ML, Bilotta F. Intraoperative monitoring of cerebral oximetry and depth of anesthesia during Neuroanesthesia procedures. Curr Opin Anaesthesiol. 2016;29:576–81.PubMedCrossRefGoogle Scholar
  47. 47.
    Stirt JA, Grosslight KR, Bedford RF, Vollmer D. “Defasciculation” with metocurine prevents succinylcholine-induced increase in intracranial pressure. Anesthesiology. 1987;67:50–3.PubMedCrossRefGoogle Scholar
  48. 48.
    Steinhaus JE, Gaskin L. A study of intravenous lidocaine as a suppressant of cough reflex. Anesthesiology. 1963;24:285–90.PubMedCrossRefGoogle Scholar
  49. 49.
    Magni G, et al. No difference in emergence time and early cognitive function between sevoflurane-fentanyl and propofol-remifentanil in patients undergoing craniotomy for supratentorial intracranial surgery. J Neurosurg Anesthesiol. 2005;17:143–8.CrossRefGoogle Scholar
  50. 50.
    Laute E, et al. Emergence times are similar with sevoflurane and total intravenous anesthesia: results of a multicenter RCT of patients scheduled for elective supratentorial craniotomy. J Neurosurg Anesthesiol. 2010;22:110–8.CrossRefGoogle Scholar
  51. 51.
    Citerio G, et al. A multicentre, randomised, open-label, controlled trial evaluating equivalence of inhalational and intravenous anaesthesia during elective craniotomy. Eur J Anesthesiol. 2012;29:371–9.CrossRefGoogle Scholar
  52. 52.
    Peterson KD, Landfienldt U, Cold GE, et al. Intracranial pressure and cerebral hemodynamic in patients with cerebral tumors. Anesthesiology. 2003;98:329–36.CrossRefGoogle Scholar
  53. 53.
    Engelhardd K, Wemer C. Inhalational or intravenous anesthetics for craniotomy? Curr Opin Anesthesiol. 2006;19:504–8.CrossRefGoogle Scholar
  54. 54.
    Algotsson L, Messeter K, Rosen I, Holmin T. Effect of nitrous oxide on cerebral haemodynamics and metabolism during isoflurane anesthesia in man. Acta Anaesthesiol Scand. 1992;36:46–52.PubMedCrossRefGoogle Scholar
  55. 55.
    Sahinovic MM, Eleveld DJ, Miyabe-Nishwaki T, Struys M, Absalom AR. Pharmacokinetics and pharmacodynamics of propofol: changes in patients with frontal brain tumors. B J Anaesth. 2017;118:91–9.Google Scholar
  56. 56.
    Zornow MH, Maze M, Dyck JB, Shafer SL. Dexmedetomidine decreases cerebral blood flow velocity in humans. J Cereb Blood Flow Metab. 1993;13:350–3.PubMedCrossRefGoogle Scholar
  57. 57.
    Prielipp RC, Wall MH, Tobin JR, et al. Dexmedetomidine-induced sedation in volunteers decrease regional and global cerebral blood flow. Anesth Analg. 2002;95:1052.PubMedGoogle Scholar
  58. 58.
    Drommond JC, Dao AV, Roth DM, et al. Effect of dexmedetomidine on cerebral blood velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology. 2008;108:225–32.CrossRefGoogle Scholar
  59. 59.
    Peng K, Jin XH, Liu SL, Ji FH. Effects of intraoperative dexmedetomidine on post-craniotomy pain. Clin Ther. 2015;33:270–6.Google Scholar
  60. 60.
    Rajan S, Hutcherson MT, Sessler DI, et al. The effect of dexmedetomidine and remifentanil on hemodynamic stability and analgesic requirement after craniotomy: a randomized control trial. J Neurosurg Anesthesiol. 2016;28:282–90.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Lassen LA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39:183–238.PubMedCrossRefGoogle Scholar
  62. 62.
    Rivera-lara L, Zorrilla-vaca A, Geocadin RG, et al. Cerebral autoregulation-oriented therapy at the bedside: a comprehensive review. Anesthesiology. 2017;126:1187–79.PubMedCrossRefGoogle Scholar
  63. 63.
    Lescot T, Degos V, Zouaoui A, et al. Opposed effects of hypertonic saline on contusions and noncontused brain tissue in patients with severe traumatic brain injury. Crit Care Med. 2006;34:3209–33.CrossRefGoogle Scholar
  64. 64.
    SAFE study investigators, Australian and New Zealand Intensive Care Society Clinical Trial Group, et al. Saline or albumin for fluid therapy in patients with traumatic brain injury. N Engl J Med. 2007;357:874–84.CrossRefGoogle Scholar
  65. 65.
    Kozek-Langenecker SA, Jungheinrich C, Sauermann W, et al. The effect of hydroxyethyl starch 130/04 (6%) on blood loss and use of blood products in major surgery. Anesth Analg. 2008;107:382–90.PubMedCrossRefGoogle Scholar
  66. 66.
    Gelb AW, Craen RA, Rao GS, et al. Does hyperventilation improve operative condition during supratentorial craniotomy? A multicenter randomized crossover trial. Anesth Analg. 2008;106:585–94.PubMedCrossRefGoogle Scholar
  67. 67.
    Coles JP, Fryer TD, Coleman MR, et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35:568–78.PubMedCrossRefGoogle Scholar
  68. 68.
    Suh SW, Hamby AM, Swanson RA. Hypoglycemia, brain energetics, and hypoglycemic neuronal death. Glia. 2007;55:1280.PubMedCrossRefGoogle Scholar
  69. 69.
    Bilotta F, Rosa G. Glucose management in the neurosurgical patients: are we yet any closer? Curr Opin Anaesthesiol. 2010;23:539–43.PubMedCrossRefGoogle Scholar
  70. 70.
    Ooi YC, Dagi TF, Maltenfort M, et al. Tight glycemic control reduces infection and improves neurological outcomes in critically ill neurosurgical and neurological patients. Neurosurgery. 2012;71:692–702.PubMedCrossRefGoogle Scholar
  71. 71.
    Paisansathan C, Ozcan M. Anesthesia for craniotomy. In: Post TW, editor. UpToDate. Walthan: UpToDate Inc.; 2017. http://www.uptodate.edu. Accessed 8 Nov 2017.Google Scholar
  72. 72.
    Wu CT, Chen LC, Kuo CP, Ju DT, Borel CO, Cherng CH, et al. A comparison of 3% hypertonic saline and mannitol for brain relaxation during elective supratentorial brain tumor surgery. Anesth Analg. 2010;110:903–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Kumaresan A, Kasper E, Bose R. Anesthetic management of supratentorial tumor. Int Anesthesiol Clin. 2015;53:74–86.PubMedCrossRefGoogle Scholar
  74. 74.
    Bruder N, Ravussin PA. Supratentorial masses: anesthetic considerations. In: Cotrell JE, Young WL, editors. Cottrell and Young’s neuroanesthesia. 5th ed. Missouri: Mosby Elsevier Publishing; 2010.Google Scholar
  75. 75.
    Basili A, Mascha EJ, Kalfas I, Schubert A. Relation between perioperative hypertension and intracranial hemorrhage after craniotomy. Anesthesiology. 2000;93:48–54.CrossRefGoogle Scholar
  76. 76.
    Bilotta F, Lam AM, Doronzio A, Cuzzone V, Delfini R, Rosa G. Esmolol blunts postoperative hemodynamic changes after propofol-remifentanil total intravenous fast-track Neuroanesthesia for intracranial surgery. J Clin Anesth. 2008;20:426–30.PubMedCrossRefGoogle Scholar
  77. 77.
    Bebawy JF, Houston CC, Kosky JL, et al. Nicardipine is superior to esmolol for the treatment of postcraniotomy emergency hypertension: a randomized open-label study. Anesth Analg. 2015;120:186–92.PubMedCrossRefGoogle Scholar
  78. 78.
    Serletis D, Bernstein M. Prospective study of awake craniotomy used routinely and nonselectively for supratentorial tumors. J Neurosurg. 2007;107:1–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Hervey-Jumper SL, Li J, Lau D, et al. Awake craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period. J Neurosurg Anesthesiol. 2015;123:325–39.CrossRefGoogle Scholar
  80. 80.
    Meng L, Berger MS, Gelb AW. The potential benefits of awake craniotomy for brain tumor resection: an anesthesiologist’s perspective. J Neurosurg Anesthesiol. 2015;27:310–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Flexman AM, Meng L, Gelb AW. Outcome in Neuroanesthesia: what matters most? Can J Anaesth. 2015;63:205–11.CrossRefGoogle Scholar
  82. 82.
    Dilmen OK, Akcil EF, Oquz A, Vehid H, Tunail Y. Comparison of conscious sedation and asleep-awake-asleep techniques for awake craniotomy. J Clin Neurosci. 2017;35:30–4.PubMedCrossRefGoogle Scholar
  83. 83.
    Eseonu CI, ReFaey K, Carcia O, John A, Quinones-Hinojosa A, Tripathi P. Awake craniotomy anesthesia: a comparison of the monitored anesthesia care and asleep-wake-asleep techniques. World Neurosurg. 2017;104:679–86.PubMedCrossRefGoogle Scholar
  84. 84.
    Napolitano M, Vaz G, Lawson TM, et al. Glioblastoma surgery with and without intraoperative MRI at 3.0T. Neurochirurgie. 2014;60:143–50.PubMedCrossRefGoogle Scholar
  85. 85.
    Ginat DT, Swearingen B, Curry W, Cahill D, Madsen J, Schaefer PW. Tesla intraoperative MRI for brain tumor surgery. J Magn Reson Imaging. 2014;39:1357–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of AnesthesiologySUNY Upstate Medical UniversitySyracuseUSA

Personalised recommendations