Blood Transfusion in Neurosurgery

  • Kavitha Jayaram
  • Shibani Padhy


Anemia is not safe in both acute and chronic conditions due to its association with a high risk of major organ injury. The highly oxygen-dependent brain is especially prone for hypoxic and ischemic changes which are likely to develop in neurosurgical conditions. New knowledge continues to emerge regarding the cellular mechanisms that maintain oxygen homeostasis during anemia.

The existing treatment modalities of anemia have not produced demons ratable improvement in patient outcome, and the inherent risks associated with transfusion cannot be underestimated. Currently there is no level 1 evidence by which definite transfusion guidelines for neurosurgical patients can be recommended. This chapter combines all the evidence surrounding anemia, transfusion, their effects on clinical outcome in various neurosurgical scenarios, and the possible future directions.


Anemia Blood transfusion Neurosurgery Traumatic brain injury Subarachnoid hemorrhage Delayed cerebral injury 


  1. 1.
    Crippa IA, Lelubre C, Lozano-Roig A, Taccone FS. Optimizing blood transfusion practices in traumatic brain injury and subarachnoid hemorrhage. Curr Anesthesiol Rep. 2016;6(3):250–6.CrossRefGoogle Scholar
  2. 2.
    Bellapart J, Boots R, Fraser J. Physiopathology of anemia and transfusion thresholds in isolated head injury. J Trauma Acute Care Surg. 2012;73(4):997–1005.PubMedCrossRefGoogle Scholar
  3. 3.
    Sena MJ, Rivers RM, Muizelaar JP, Battistella FD, Utter GH. Transfusion practices for acute traumatic brain injury: a survey of physicians at US trauma centers. Intensive Care Med. 2009;35(3):480–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Rolston JD, Han SJ, Lau CY, Berger MS, Parsa AT. Frequency and predictors of complications in neurological surgery: national trends from 2006 to 2011. J Neurosurg. 2014;120(3):736–45.PubMedCrossRefGoogle Scholar
  5. 5.
    Linsler S, Ketter R, Eichler H, Schwerdtfeger K, Steudel WI, Oertel J. Red blood cell transfusion in neurosurgery. Acta Neurochir. 2012;154(7):1303–8.PubMedCrossRefGoogle Scholar
  6. 6.
    White N, Marcus R, Dover S, Solanki G, Nishikawa H, Millar C, et al. Predictors of blood loss in fronto-orbital advancement and remodeling. J Craniofac Surg. 2009;20(2):378–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Boutin A, Chasse M, Shemilt M, Lauzier F, Moore L, Zarychanski R, et al. Red blood cell transfusion in patients with traumatic brain injury: a systematic review and meta-analysis. Transfus Med Rev. 2016;30(1):15–24.PubMedCrossRefGoogle Scholar
  8. 8.
    Epstein DS, Mitra B, O’Reilly G, Rosenfeld JV, Cameron PA. Acute traumatic coagulopathy in the setting of isolated traumatic brain injury: a systematic review and meta-analysis. Injury. 2014;45(5):819–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Mc Ewen J, Huttunen KH. Transfusion practice in neuroanesthesia. Curr Opin Anesthesiol. 2009;22(5):566–71.CrossRefGoogle Scholar
  10. 10.
    Luostarinen T, Lehto H, Skrifvars MB, Kivisaari R, Niemela M, Hernesniemi J, et al. Transfusion frequency of red blood cells, fresh frozen plasma, and platelets during ruptured cerebral aneurysm surgery. World Neurosurg. 2015;84(2):446–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Oetgen ME, Litrenta J. Perioperative blood management in pediatric spine surgery. J Am Acad Orthop Surg. 2017;25(7):480–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Robertson CS, Hannay HJ, Yamal JM, Gopinath S, Goodman JC, Tilley BC, et al. Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial. JAMA. 2014;312(1):36–47.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Vedantam A, Yamal JM, Rubin ML, Robertson CS, Gopinath SP. Progressive hemorrhagic injury after severe traumatic brain injury: effect of hemoglobin transfusion thresholds. J Neurosurg. 2016;125(5):1229–34.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Malone DL, Dunne J, Tracy JK, Putnam AT, Scalea TM, Napolitano LM. Blood transfusion, independent of shock severity, is associated with worse outcome in trauma. J Trauma. 2003;54(5):898–905.PubMedCrossRefGoogle Scholar
  15. 15.
    Shander A, Goodnough LT. Can blood transfusion be not only ineffective, but also injurious? Ann Thorac Surg. 2014;97(1):11–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Marik PE, Corwin HL. Efficacy of red blood cell transfusion in the critically ill: a systematic review of the literature. Crit Care Med. 2008;36(9):2667–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Vamvakas EC. Possible mechanisms of allogeneic blood transfusion-associated postoperative infection. Transfus Med Rev. 2002;16(2):144–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Vamvakas EC, Carven JH. Allogeneic blood transfusion and postoperative duration of mechanical ventilation: effects of red cell supernatant, platelet supernatant, plasma components and total transfused fluid. Vox Sang. 2002;82(3):141–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Coleman T, Brines M. Science review: recombinant human erythropoietin in critical illness: a role beyond anemia? Crit Care. 2004;8(5):337–41.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Jian M, Li X, Wang A, Zhang L, Han R, Gelb AW. Flurbiprofen and hypertension but not hydroxyethyl starch are associated with post-craniotomy intracranial haematoma requiring surgery. Br J Anaesth. 2014;113(5):832–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Dadure MDPDC, Sauter MDM, Bringuier PDPDS, Bigorre MDM, Raux MDMSO, Rochette MDA, et al. Intraoperative Tranexamic acid reduces blood transfusion in children undergoing Craniosynostosis surgery a randomized double-blind study. Anesthesiology. 2011;114(4):856–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Wong J, El Beheiry H, Rampersaud YR, Lewis S, Ahn H, De Silva Y, et al. Tranexamic acid reduces perioperative blood loss in adult patients having spinal fusion surgery. Anesth Analg. 2008;107(5):1479–86.PubMedCrossRefGoogle Scholar
  23. 23.
    Mebel D, Akagami R, Flexman AM. Use of tranexamic acid is associated with reduced blood product transfusion in complex skull base neurosurgical procedures: a retrospective cohort study. Anesth Analg. 2016;122(2):503–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Hooda B, Chouhan RS, Rath GP, Bithal PK, Suri A, Lamsal R. Effect of tranexamic acid on intraoperative blood loss and transfusion requirements in patients undergoing excision of intracranial meningioma. J Clin Neurosci. 2017;41:132–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Roberts I, Shakur H, Coats T, Hunt B, Balogun E, Barnetson L, et al. The CRASH-2 trial: a randomised controlled trial and economic evaluation of the effects of tranexamic acid on death, vascular occlusive events and transfusion requirement in bleeding trauma patients. Health Technol Assess. 2013;17(10):1–79.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Baharoglu MI, Germans MR, Rinkel GJ, Algra A, Vermeulen M, van Gijn J, et al. Antifibrinolytic therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2013;8:CD001245.Google Scholar
  27. 27.
    Willner D, Spennati V, Stohl S, Tosti G, Aloisio S, Bilotta F. Spine surgery and blood loss: systematic review of clinical evidence. Anesth Analg. 2016;123(5):1307–15.PubMedCrossRefGoogle Scholar
  28. 28.
    Thompson ME, Saadeh C, Watkins P, Nagy L, Demke J. Blood loss and transfusion requirements with epsilon-aminocaproic acid use during cranial vault reconstruction surgery. J Clin Anesth. 2017;36:153–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Naqash I, Draboo M, Lone A, Nengroo S, Kirmani A, Bhat A. Evaluation of acute normovolemic hemodilution and autotransfusion in neurosurgical patients undergoing excision of intracranial meningioma. J Anaesthesiol Clin Pharmacol. 2011;27(1):54–8.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Oppitz PP, Stefani MA. Acute normovolemic hemodilution is safe in neurosurgery. World Neurosurg. 2013;79(5–6):719–24.PubMedCrossRefGoogle Scholar
  31. 31.
    Cataldi S, Bruder N, Dufour H, Lefevre P, Grisoli F, Francois G. Intraoperative autologous blood transfusion in intracranial surgery. Neurosurgery. 1997;40(4):765–71. discussion 71–2.PubMedCrossRefGoogle Scholar
  32. 32.
    Miao YL, Ma HS, Guo WZ, Wu JG, Liu Y, Shi WZ, et al. The efficacy and cost-effectiveness of cell saver use in instrumented posterior correction and fusion surgery for scoliosis in school-aged children and adolescents. Plo S One. 2014;9(4):e92997.CrossRefGoogle Scholar
  33. 33.
    Kumar N, Zaw AS, Khoo BL, Nandi S, Lai Z, Singh G, et al. Intraoperative cell salvage in metastatic spine tumour surgery reduces potential for reinfusion of viable cancer cells. Eur Spine J. 2016;25(12):4008–15.PubMedCrossRefGoogle Scholar
  34. 34.
    Epstein NE. Tisseel does not reduce postoperative drainage, length of stay, and transfusion requirements for lumbar laminectomy with noninstrumented fusion versus laminectomy alone. Surg Neurol Int. 2015;6(Suppl 4):S172–S6.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Raw DA, Beattie JK, Hunter JM. Anaesthesia for spinal surgery in adults. Br J Anaesth. 2003;91(6):886–904.PubMedCrossRefGoogle Scholar
  36. 36.
    Koh JC, Lee JS, Han DW, Choi S, Chang CH. Increase in airway pressure resulting from prone position patient placing may predict intraoperative surgical blood loss. Spine. 2013;38(11):E678–82.PubMedCrossRefGoogle Scholar
  37. 37.
    Surve RM, Muthuchellappan R, Rao GS, Philip M. The effect of blood transfusion on central venous oxygen saturation in critically ill patients admitted to a neurointensive care unit. Transfus Med. 2016;26(5):343–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Dueck MH, Klimek M, Appenrodt S, Weigand C, Boerner U. Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology. 2005;103(2):249–57.PubMedCrossRefGoogle Scholar
  39. 39.
    Mazza BF, Freitas FGR, Barros MMO, Azevedo LCP, Machado FR. Blood transfusions in septic shock: is 7.0g/dL really the appropriate threshold? Rev Bras Ter Intensiv. 2015;27(1):36–43.CrossRefGoogle Scholar
  40. 40.
    Haas T, Spielmann N, Mauch J, Madjdpour C, Speer O, Schmugge M, et al. Comparison of thromboelastometry (ROTEM (R)) with standard plasmatic coagulation testing in paediatric surgery. Br J Anaesth. 2012;108(1):36–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Awada WN, Mohmoued MF, Radwan TM, Hussien GZ, Elkady HW. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015;29(6):733–40.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Cem A, Serpil UO, Fevzi T, Murat O, Umit G, Esin E, et al. Efficacy of near-infrared spectrometry for monitoring the cerebral effects of severe dilutional anemia. Heart Surg Forum. 2014;17(3):E154–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Green DW. A retrospective study of changes in cerebral oxygenation using a cerebral oximeter in older patients undergoing prolonged major abdominal surgery. Eur J Anaesthesiol. 2007;24(3):230–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Terborg C, Groschel K, Petrovitch A, Ringer T, Schnaudigel S, Witte OW, et al. Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by near-infrared spectroscopy. Eur Neurol. 2009;62(6):338–43.PubMedCrossRefGoogle Scholar
  45. 45.
    Schoon P, Benito Mori L, Orlandi G, Larralde C, Radrizzani M. Incidence of intracranial hypertension related to jugular bulb oxygen saturation disturbances in severe traumatic brain injury patients. Acta Neurochir Suppl. 2002;81:285–7.PubMedGoogle Scholar
  46. 46.
    Oddo M, Levine JM, Kumar M, Iglesias K, Frangos S, Maloney-Wilensky E, et al. Anemia and brain oxygen after severe traumatic brain injury. Intensive Care Med. 2012;38(9):1497–504.PubMedCrossRefGoogle Scholar
  47. 47.
    Hare GM, Tsui AK, McLaren AT, Ragoonanan TE, Yu J, Mazer CD. Anemia and cerebral outcomes: many questions, fewer answers. Anesth Analg. 2008;107(4):1356–70.PubMedCrossRefGoogle Scholar
  48. 48.
    Warner MA, O’Keeffe T, Bhavsar P, Shringer R, Moore C, Harper C, et al. Transfusions and long-term functional outcomes in traumatic brain injury. J Neurosurg. 2010;113(3):539–46.PubMedCrossRefGoogle Scholar
  49. 49.
    Carlson AP, Schermer CR, Lu SW. Retrospective evaluation of anemia and transfusion in traumatic brain injury. J Trauma. 2006;61(3):567–71.PubMedCrossRefGoogle Scholar
  50. 50.
    Salim A, Hadjizacharia P, DuBose J, Brown C, Inaba K, Chan L, et al. Role of anemia in traumatic brain injury. J Am Coll Surg. 2008;207(3):398–406.PubMedCrossRefGoogle Scholar
  51. 51.
    Smith MJ, Stiefel MF, Magge S, Frangos S, Bloom S, Gracias V, et al. Packed red blood cell transfusion increases local cerebral oxygenation. Crit Care Med. 2005;33(5):1104–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Kramer AH, Diringer MN, Suarez JI, Naidech AM, Macdonald LR, Le Roux PD. Red blood cell transfusion in patients with subarachnoid hemorrhage: a multidisciplinary north American survey. Crit Care. 2011;15(1):R30.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Nichol A, French C, Little L, Haddad S, Presneill J, Arabi Y, et al. Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. Lancet. 2015;386(10012):2499–506.PubMedCrossRefGoogle Scholar
  54. 54.
    Festic E, Rabinstein AA, Freeman WD, Mauricio EA, Robinson MT, Mandrekar J, et al. Blood transfusion is an important predictor of hospital mortality among patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2013;18(2):209–15.PubMedCrossRefGoogle Scholar
  55. 55.
    Rosenberg NF, Koht A, Naidech AM. Anemia and transfusion after aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2013;25(1):66–74.PubMedCrossRefGoogle Scholar
  56. 56.
    Le Roux PD. Anemia and transfusion after subarachnoid hemorrhage. Neurocrit Care. 2011;15(2):342–53.PubMedCrossRefGoogle Scholar
  57. 57.
    Naidech AM, Jovanovic B, Wartenberg KE, Parra A, Ostapkovich N, Connolly ES, et al. Higher hemoglobin is associated with improved outcome after subarachnoid hemorrhage. Crit Care Med. 2007;35(10):2383–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S, et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009;31(2):151–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Mayer SA, Lin J, Homma S, Solomon RA, Lennihan L, Sherman D, et al. Myocardial injury and left ventricular performance after subarachnoid hemorrhage. Stroke. 1999;30(4):780–6.PubMedCrossRefGoogle Scholar
  60. 60.
    English SW, Fergusson D, Chassé M, Turgeon AF, Lauzier F, Griesdale D, et al. Aneurysmal sub arachnoid hemorrhage—red blood cell transfusion and outcome (SAHaRA): a pilot randomised controlled trial protocol. BMJ Open. 2016;6(12):e012623.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Diringer MN, Bleck TP, Claude Hemphill J 3rd, Menon D, Shutter L, Vespa P, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical care Society’s multidisciplinary consensus conference. Neurocrit Care. 2011;15(2):211–40.PubMedCrossRefGoogle Scholar
  62. 62.
    Wu W-C, Trivedi A, Friedmann PD, Henderson WG, Smith TS, Poses RM, et al. Association between hospital intraoperative blood transfusion practices for surgical blood loss and hospital surgical mortality rates. Ann Surg. 2012;255(4):708–14.PubMedCrossRefGoogle Scholar
  63. 63.
    Rogers L, Zhang P, Vogelbaum M, Perry A, Ashby LS, Modi J, et al. Mngi-08. High-risk meningioma: initial outcomes from Nrg oncology/Rtog-0539. Neuro-Oncology. 2017;19(suppl_6):vi133.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Atzil S, Arad M, Glasner A, Abiri N, Avraham R, Greenfeld K, et al. Blood transfusion promotes cancer progression: a critical role for aged erythrocytes. Anesthesiology. 2008;109(6):989–97.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Alkhalid Y, Lagman C, Sheppard JP, Nguyen T, Prashant GN, Ziman AF, et al. Restrictive transfusion threshold is safe in high-risk patients undergoing brain tumor surgery. Clin Neurol Neurosurg. 2017;163:103–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Hu SS. Blood loss in adult spinal surgery. Eur Spine J. 2004;13(Suppl 1):S3–5.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Zheng F, Cammisa FP Jr, Sandhu HS, Girardi FP, Khan SN. Factors predicting hospital stay, operative time, blood loss, and transfusion in patients undergoing revision posterior lumbar spine decompression, fusion, and segmental instrumentation. Spine. 2002;27(8):818–24.PubMedCrossRefGoogle Scholar
  68. 68.
    Master DL, Son-Hing JP, Poe-Kochert C, Armstrong DG, Thompson GH. Risk factors for major complications after surgery for neuromuscular scoliosis. Spine. 2011;36(7):564–71.PubMedCrossRefGoogle Scholar
  69. 69.
    Stern S, Rice J, Philbin N, McGwin G, Arnaud F, Johnson T, et al. Resuscitation with the hemoglobin-based oxygen carrier, HBOC-201, in a swine model of severe uncontrolled hemorrhage and traumatic brain injury. Shock (Augusta, Ga). 2009;31(1):64–79.CrossRefGoogle Scholar
  70. 70.
    Janssen SJ, Braun Y, Wood KB, Cha TD, Schwab JH. Allogeneic blood transfusions and postoperative infections after lumbar spine surgery. Spine J. 2015;15(5):901–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Guay J. The effect of neuraxial blocks on surgical blood loss and blood transfusion requirements: a meta-analysis. J Clin Anesth. 2006;18(2):124–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Vassal O, Desgranges FP, Tosetti S, Burgal S, Dailler F, Javouhey E, et al. Risk factors for intraoperative allogeneic blood transfusion during craniotomy for brain tumor removal in children. Paediatr Anaesth. 2016;26(2):199–206.PubMedCrossRefGoogle Scholar
  73. 73.
    Nguyen TT, Hill S, Austin TM, Whitney GM, Wellons JC 3rd, Lam HV. Use of blood-sparing surgical techniques and transfusion algorithms: association with decreased blood administration in children undergoing primary open craniosynostosis repair. J Neurosurg Pediatr. 2015;31:1–8.Google Scholar
  74. 74.
    Vega RA, Lyon C, Kierce JF, Tye GW, Ritter AM, Rhodes JL. Minimizing transfusion requirements for children undergoing craniosynostosis repair: the CHoR protocol. J Neurosurg Pediatr. 2014;14(2):190–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Vitale MG, Levy DE, Park MC, Choi H, Choe JC, Roye DP Jr. Quantifying risk of transfusion in children undergoing spine surgery. Spine J. 2002;2(3):166–72.PubMedCrossRefGoogle Scholar
  76. 76.
    Lavoie J. Blood transfusion risks and alternative strategies in pediatric patients. Paediatr Anaesth. 2011;21(1):14–24.PubMedCrossRefGoogle Scholar
  77. 77.
    Kuramatsu JB, Gerner ST, Lücking H, Kloska SP, Schellinger PD, Köhrmann M, et al. Anemia is an independent prognostic factor in intracerebral hemorrhage: an observational cohort study. Crit Care. 2013;17(4):R148.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Diedler J, Sykora M, Hahn P, Heerlein K, Schölzke MN, Kellert L, et al. Low hemoglobin is associated with poor functional outcome after non-traumatic, supratentorial intracerebral hemorrhage. Crit Care. 2010;14(2):R63.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sheth KN, Gilson AJ, Chang Y, Kumar MA, Rahman RM, Rost NS, et al. Packed red blood cell transfusion and decreased mortality in intracerebral hemorrhage. Neurosurgery. 2011;68(5):1286–92.PubMedCrossRefGoogle Scholar
  80. 80.
    Frontera JA, Lewin JJ 3rd, Rabinstein AA, Aisiku IP, Alexandrov AW, Cook AM, et al. Guideline for reversal of antithrombotics in intracranial hemorrhage: a statement for healthcare professionals from the neurocritical care society and society of critical care medicine. Neurocrit Care. 2016;24(1):6–46.PubMedCrossRefGoogle Scholar
  81. 81.
    Kellert L, Martin E, Sykora M, Bauer H, Gussmann P, Diedler J, et al. Cerebral oxygen transport failure?: decreasing hemoglobin and hematocrit levels after ischemic stroke predict poor outcome and mortality: STroke: RelevAnt impact of hemoGlobin, hematocrit and transfusion (STRAIGHT)--an observational study. Stroke. 2011;42(10):2832–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Maas AI, Menon DK, Steyerberg EW, Citerio G, Lecky F, Manley GT, et al. Collaborative European NeuroTrauma effectiveness research in traumatic brain injury (CENTER-TBI): a prospective longitudinal observational study. Neurosurgery. 2015;76(1):67–80.PubMedCrossRefGoogle Scholar
  83. 83.
    Hébert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med. 1999;340(6):409–17.PubMedCrossRefGoogle Scholar
  84. 84.
    Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury. Fourth edition. Neurosurgery. 2017;80(1):6–15.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Murphy MF, Estcourt L, Goodnough LT. Blood transfusion strategies in elderly patients. Lancet Haematol. 2017;4(10):e453–e4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kavitha Jayaram
    • 1
  • Shibani Padhy
    • 1
  1. 1.Department of Anesthesiology and Critical CareNizams Institute of Medical SciencesHyderabadIndia

Personalised recommendations