Advertisement

Physiology for Neuroanesthesia

  • Thomas M. PriceEmail author
  • Catriona J. Kelly
  • Katie E. S. Megaw
Chapter

Abstract

A sound understanding of cerebral and spinal cord physiology is vital for the delivery of safe perioperative care of patients undergoing anesthesia for neurosurgical procedures. This chapter covers key concepts in cerebral and spinal cord physiology, with particular attention to clinical relevance for the neuroanesthetist. Cerebral metabolism, cerebral blood flow and autoregulation, intracranial pressure, and cerebrospinal fluid physiology are reviewed. In addition, relevant pituitary and spinal cord physiology is also discussed. The chapter is intended to provide those involved in the care of neurosurgical patients with updated concepts in core physiological principles that underpin the practice of neuroanesthesia and neurocritical care.

Keywords

Physiology Cerebral metabolism Intracranial pressure Cerebrospinal fluid Autoregulation Pituitary gland Spinal cord 

References

  1. 1.
    Cravan C, Reddy U. Applied cerebral physiology. Anaesth Intensive Care Med. 2016;17(12):630–4.CrossRefGoogle Scholar
  2. 2.
    Taylor C, Hirsch N. Applied cerebral physiology. Anaesth Intensive Care Med. 2010;11(9):343–8.CrossRefGoogle Scholar
  3. 3.
    Brooks G. Lactate: glycolytic end product and oxidative substrate during sustained exercise in mammals – the ‘lactate shuttle’. In: Gilles R, editor. Circulation, respiration, and metabolism: current comparative approaches. Berlin: Springer; 1985. p. 208–18.CrossRefGoogle Scholar
  4. 4.
    Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, et al. Evidence supporting the existence of an activity-dependent astrocyte–neuron lactate shuttle. Dev Neurosci. 1998;20(4–5):291–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Coles JP. Cerebral Metabolism. In: Gupta AK, Gelb AW, editors. Essentials of Neuroanesthesia and Neurocritical care. Philadelphia: Saunders; 2008. p. 32–5.CrossRefGoogle Scholar
  6. 6.
    Kass IS, Cottrell JE, Abramowicz AE, Hou JY, Lei B. Brain metabolism, the pathophysiology of brain injury, the potential beneficial agents and techniques. In: Cottrell JE, Patel P, editors. Cottrell and Patel’s neuroanesthesia. 6th ed. Amsterdam: Elsevier; 2017. p. 1–18.Google Scholar
  7. 7.
    Tameem A, Krovvidi H. Cerebral physiology. Contin Educ Anaesth Crit Care Pain. 2012;13(4):113–8.CrossRefGoogle Scholar
  8. 8.
    Venkat P, Chopp M, Chen J. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain. Croat Med J. 2016;57:223–8.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system – a beginner’s guide. Neurochem Res. 2015;40(12):2583–99.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GWJ, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6–15.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Armstead W. Cerebral blood flow autoregulation and dysautoregulation. Anesthesiol Clin. 2016;34(3):465–77.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lassen LA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39:183–238.CrossRefGoogle Scholar
  14. 14.
    Payne S. Cerebral autoregulation: control of blood flow in the brain. Berlin: Springer; 2016.CrossRefGoogle Scholar
  15. 15.
    Ainslie PN, Duffin J. Integration of cerebrovascular CO2 reactivity and chem-reflex control breathing: mechanisms of regulation, measurement and interpretation. Am J Physiol Regul Integr Comp Physiol. 2009;296(5):1473–95.CrossRefGoogle Scholar
  16. 16.
    Hou YJ. Physiology and metabolism of the brain and spinal cord. In: Newfield P, Cottrell JE, editors. Handbook of Neuroanesthesia. 5th ed. Baltimore: Lippincott Williams and Wilkins; 2012. p. 1–9.Google Scholar
  17. 17.
    Zacharia B, Sander Connolly E Jr. Principles of cerebral metabolism and blood flow. In: Le Roux P, Levine J, Kofke W, editors. Monitoring in neurocritical care. 1st ed. Philadelphia: Saunders; 2013.Google Scholar
  18. 18.
    Meng L, Gelb A. Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology. 2015;122:196–205.PubMedCrossRefGoogle Scholar
  19. 19.
    Shardlow E, Jackson A. Cerebral blood flow and intracranial pressure. Anaesth Intensive Care Med. 2011;12(5):220–3.CrossRefGoogle Scholar
  20. 20.
    Artu AA. Cerebrospinal fluid. In: Cottrell JE, Patel P, editors. Cottrell and Patel’s neuroanesthesia. 6th ed. Amsterdam: Elsevier; 2017. p. 59–73.Google Scholar
  21. 21.
    Hill L, Gwinnutt C. Cerebral physiology part 2 - intracranial pressure. ATOTW. 2007;71:1–9.Google Scholar
  22. 22.
    Sorrentino E, Diedler J, Kasprowicz M, et al. Neurocrit Care. 2012;16(2):258–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Timofeev I. The intracranial compartment and intracranial pressure. In: Gupta AK, Gelb AW, editors. Essentials of neuroanesthesia and neurocritical care. Philadelphia: Saunders; 2008. p. 26–41.CrossRefGoogle Scholar
  24. 24.
    Abbott AH, Netherway DJ, Niemann DB, et al. CT determined intracranial volume for a normal population. J Craniofac Surg. 2000;11:211–23.PubMedCrossRefGoogle Scholar
  25. 25.
    Wilson MH. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36(8):1338–50.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Monro A. Observations on the structure and function of the nervous system. Edinburgh: Creech and Johnson; 1783.Google Scholar
  27. 27.
    Kellie G. An account of the appearances observed in the dissection of two of the three individuals presumed to have perished in the storm of the 3rd, and whose bodies were discovered in the vicinity of Leith on the morning of the 4th November 1821 with some reflections on the pathology of the brain. Trans Medico Chirurg Soc Edinburgh. 1824;1:84–169.Google Scholar
  28. 28.
    Cushing H. The third circulation in studies in intracranial physiology and surgery. London: Oxford University Press; 1926.Google Scholar
  29. 29.
    Mavrocordatos P, Bissonnette B, Ravussin P. Effects of neck position and head elevation on intracranial pressure in anaesthetized neurosurgical patients: preliminary results. J Neurosurg Anesthesiol. 2000;12:10–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Cushing H. The blood pressure reaction of acute cerebral compression, illustrated by cases of intracranial hemorrhage. Am J Sci. 1903;13:1017–44.Google Scholar
  31. 31.
    Nimmo G, Howie A, Grant I. Effects of mechanical ventilation on Cushing’s triad. Crit Care. 2009;13(Suppl 1):77.CrossRefGoogle Scholar
  32. 32.
    Nussey SS, Whitehead SA. The pituitary gland. In: Nussey SS, Whitehead SA, editors. Endocrinology: an integrated approach. London: Bios Scientific Publishers Ltd; 2001. p. 283–331.CrossRefGoogle Scholar
  33. 33.
    Bonner S, Smith C. Initial management of acute spinal cord injury. Contin Educ Anaesth Crit Care Pain. 2013;13(6):224–31.CrossRefGoogle Scholar
  34. 34.
    Ranalli LJ, Taylor GA. Neuroanatomy, neurophysiology, and neuroanesthesia. 2016. https://aneskey.com/neuroanatomy-neurophysiology-and-neuroanesthesia/. Accessed 1 Feb 2018.
  35. 35.
    Stecker MM. A review of intraoperative monitoring for spinal surgery. Surg Neurol Int. 2012;3(Suppl 3):174–87.CrossRefGoogle Scholar
  36. 36.
    Hacking C, Knipe H. Spinal Cord Blood Supply. 2017. https://radiopaedia.org/articles/spinal-cord-blood-supply/revisions. Accessed 1 Feb 2018.
  37. 37.
    Ploumis A, Yadlapalli N, Fehlings MG, Kwon BK, Vaccaro AR. A systematic review of the evidence supporting a role for vasopressor support in acute SCI. Spinal Cord. 2010;48(5):356–62.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ryken TC, Hurlbert RJ, Hadley MN, Aarabi B, Dhall SS, Gelb DE, et al. The acute cardiopulmonary management of patients with cervical spinal cord injuries. Neurosurgery. 2013;72(Suppl 2):84–92.CrossRefGoogle Scholar
  39. 39.
    Werndle MC, Saadoun S, Phang I, Czosnyka M, Varsos GV, Czosnyka ZH, et al. Monitoring of spinal cord perfusion pressure in acute spinal cord injury: initial findings of the injured spinal cord pressure evaluation study. Crit Care Med. 2014;42(3):646–55.CrossRefGoogle Scholar
  40. 40.
    Squair JW, Belanger LM, Tsang A, Ritchie L, Mac-Thiong JM, Parent S, et al. Spinal cord perfusion pressure predicts neurologic recovery in acute spinal cord injury. Neurology. 2017;89(16):1660–7.CrossRefGoogle Scholar
  41. 41.
    Bankenahally R, Krovvidi H. Autonomic nervous system: anatomy, physiology, and relevance in anaesthesia and critical care medicine. BJA Educ. 2016;16(11):381–7.CrossRefGoogle Scholar
  42. 42.
    Singhal V, Aggarwal R. Spinal shock. In: Prabhakar H, editor. Complications in neuroanesthesia. San Diego: Academic; 2016. p. 89–94.CrossRefGoogle Scholar
  43. 43.
    Shergill IS, Arya M, Hamid R, et al. The importance of autonomic dysreflexia to the urologist. BJU Int. 2004;93:923–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Petsas A, Drake J. Perioperative management for patients with a chronic spinal cord injury. BJA Educ. 2015;15(3):123–30.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Thomas M. Price
    • 1
    Email author
  • Catriona J. Kelly
    • 1
  • Katie E. S. Megaw
    • 1
  1. 1.Department of NeuroanaesthesiaRoyal Victoria Hospital, BelfastBelfastUK

Personalised recommendations