Advertisement

Anesthesia for Spine Surgery

  • Andres Zorrilla-VacaEmail author
  • Michael C. Grant
  • Marek A. Mirski
Chapter

Abstract

Spine surgery is a common procedure performed in both elective and emergency scenarios. Over the last two decades, there have been a multitude of advances in surgical and anesthetic techniques that have improved patient safety and postoperative outcomes. The recent focus of anesthetic management for patients undergoing spine surgery is not only limited to successful perioperative assessment or intraoperative stability but also to rapid recovery and prevention of postoperative complications. In recent years, enhanced recovery after surgery (ERAS) programs have emerged within the specialty of spine surgery. These programs include a multidisciplinary, patient-focused approach along with multimodal analgesic strategies aimed at decreasing complications, relieving postoperative pain, and consequently hastening recovery and reducing length of stay. Although general anesthesia for spine surgery has been widely accepted, a new era of regional anesthesia brings growing evidence to supporting its use in lumbar spine surgery. Regional techniques have been associated with reduction in intraoperative blood loss, length of hospital stay, and incidence of postoperative nausea and vomiting. This recent evidence has provoked further discussion of this topic, and, to date, there is still no definite answer regarding optimal anesthesia for spine surgery. This chapter serves to summarize the available evidence on management of anesthesia for patients undergoing spine surgery.

Keywords

Spine surgery Anesthesia General anesthesia Regional anesthesia Enhanced recovery after surgery 

References

  1. 1.
    Raw D, Beattie J, Hunter J. Anaesthesia for spinal surgery in adults. Br J Anaesth. 2003;91(6):886–904.CrossRefGoogle Scholar
  2. 2.
    Wainwright TW, Immins T, Middleton RG. Enhanced recovery after surgery (ERAS) and its applicability for major spine surgery. Best Pract Res Clin Anaesthesiol. 2016;30(1):91–102.CrossRefGoogle Scholar
  3. 3.
    Wang MY, Chang PY, Grossman J. Development of an Enhanced Recovery After Surgery (ERAS) approach for lumbar spinal fusion. J Neurosurg Spine. 2017;26(4):411–8.CrossRefGoogle Scholar
  4. 4.
    Wainwright TW, Wang MY, Immins T, Middleton RG. Enhanced recovery after surgery (ERAS)—concepts, components, and application to spine surgery. Semin Spine Surg. 2018;30(2):104–10.CrossRefGoogle Scholar
  5. 5.
    Gornitzky AL, Flynn JM, Muhly WT, Sankar WN. A rapid recovery pathway for adolescent idiopathic scoliosis that improves pain control and reduces time to inpatient recovery after posterior spinal fusion. Spine Deform. 2016;4:288–95.CrossRefGoogle Scholar
  6. 6.
    Papanastassiou I, Anderson R, Barber N, Conover C, Castellvi AE. Effects of preoperative education on spinal surgery patients. SAS J. 2011;5(4):120–4.CrossRefGoogle Scholar
  7. 7.
    Zheng K, Angst M. Guidelines for the intraoperative management of patients undergoing spine surgery. Ether: Resour Anesth Res Edu Stanford Med. http://ether.stanford.edu/policies/spine_surgery.html. Accessed 4 Jan 2018
  8. 8.
    Yoshida G, Hasegawa T, Yamato Y, Kobayashi S, Oe S, Banno T, et al. Predicting perioperative complications in adult spinal deformity surgery using a simple sliding scale. Spine. 2018;43(8):562–70.CrossRefGoogle Scholar
  9. 9.
    Furunes H, Hellum C, Brox JI, Rossvoll I, Espeland A, Berg L, et al. Lumbar total disc replacement: predictors for long-term outcome. European Spine J. 2017;27(3):709–18.  https://doi.org/10.1007/s00586-017-5375-1.CrossRefGoogle Scholar
  10. 10.
    Madsbu MA, Salvesen O, Werner DAT, Franssen E, Weber C, Nygaard OP, et al. Surgery for herniated lumbar disc in daily tobacco smokers: a multicenter observational study. World Neurosurg. 2018;109:e581–7.CrossRefGoogle Scholar
  11. 11.
    Dessy AM, Yuk FJ, Maniya AY, Connolly JG, Nathanson JT, Rasouli JJ, Choudhri TF. Reduced surgical site infection rates following spine surgery using an enhanced prophylaxis protocol. Cureus. 2017;9(4):e1139.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Robba C, Qeva E, Borsellino B, Aloisio S, Tosti G, Bilotta F. Effects of propofol or sevoflurane anesthesia induction on hemodynamics in patients undergoing fiberoptic intubation for cervical spine surgery: a randomized, controlled. J Anaesthesiol Clin Pharmacol. 2017;33(2):215–20.PubMedPubMedCentralGoogle Scholar
  13. 13.
    John DA, Tobey RE, Homer LD, Rice CL. Onset of succinylcholine-induced hyperkalemia following denervation. Anesthesiology. 1976;45(3):294–9.CrossRefGoogle Scholar
  14. 14.
    Hambly PR, Martin B. Anaesthesia for chronic spinal cord lesions. Anaesthesia. 1998;53(3):273–89.CrossRefGoogle Scholar
  15. 15.
    Calder I. Anaesthesia for spinal surgery. Best Pract Res Clin Anaesthesiol. 1999;13(4):629–42.CrossRefGoogle Scholar
  16. 16.
    Loftus RW, Yeager MP, Clark JA, Brown JR, Abdu WA, Sengupta DK, Beach ML. Intraoperative ketamine reduces perioperative opiate consumption in opiate-dependent patients with chronic back pain undergoing back surgery. Anesthesiology. 2010;113(3):639–46.PubMedGoogle Scholar
  17. 17.
    Mitra R, Prabhakar H, Rath GP, Bithal PK, Khandelwal A. A comparative study between intraoperative low-dose ketamine and dexmedetomidine, as an anaesthetic adjuvant in lumbar spine instrumentation surgery for the post-operative analgesic requirement. J Neuroanaesthesiol Crit Care. 2017;4(2):91.CrossRefGoogle Scholar
  18. 18.
    Zorrilla-Vaca A, Healy RJ, Mirski MA. A comparison of regional versus general anesthesia for lumbar spine surgery: a meta-analysis of randomized studies. J Neurosurg Anesthesiol. 2017;29(4):415–25.CrossRefGoogle Scholar
  19. 19.
    Sharrock NE. Lumbar spine fusion performed with hypotensive thoracic epidural anesthesia. Tech Reg Anesth Pain Manag. 1999;3(4):233–5.CrossRefGoogle Scholar
  20. 20.
    Gessler F, Mutlak H, Tizi K, Senft C, Setzer M, Seifert V, Weise L. Postoperative patient-controlled epidural analgesia in patients with spondylodiscitis and posterior spinal fusion surgery. J Neurosurg Spine. 2016;24(6):965–70.CrossRefGoogle Scholar
  21. 21.
    Wenk M, Liljenqvist U, Kaulingfrecks T, Gurlit S, Ermert T, Popping DM, Mollmann M. Intra- versus postoperative initiation of pain control via a thoracic epidural catheter for lumbar spinal fusion surgery: a randomised trial. Minerva Anestesiol. 2017;84(7):796–802.  https://doi.org/10.23736/s0375-9393.17.12136-x.CrossRefPubMedGoogle Scholar
  22. 22.
    Tian P, Fu X, Li ZJ, Ma XL. Comparison of patient-controlled epidural analgesia and patient-controlled intravenous analgesia after spinal fusion surgery: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord. 2015;16:388.CrossRefGoogle Scholar
  23. 23.
    Wang H, Ma L, Yang D, Wang T, Wang Q, Zhang L, Ding W. Cervical plexus anesthesia versus general anesthesia for anterior cervical discectomy and fusion surgery: a randomized clinical trial. Medicine. 2017;96(7):e6119.CrossRefGoogle Scholar
  24. 24.
    Mariappan R, Mehta J, Massicotte E, Nagappa M, Manninen P, Venkatraghavan L. Effect of superficial cervical plexus block on postoperative quality of recovery after anterior cervical discectomy and fusion: a randomized controlled trial. Can J Anesth. 2015;62(8):883.CrossRefGoogle Scholar
  25. 25.
    He-Jiang Z, Tian-de Y, Jing H. Clinical study of cervical plexus block in combination with general anesthesia in patients undergoing anterior cervical spine surgery. Chongqing Med. 2010;19:025.Google Scholar
  26. 26.
    Liu D-H, Cai P, Liang J-Q, Feng Z-H, Lu X-Q, Zhang K-J. The efficacy of combination of general anesthesia and unilateral cervical plexus nerve block for anterior cervical spine surgery. Guide Chin Med. 2009;13:026.Google Scholar
  27. 27.
    Yuan QM, Zhao ZH, Xu BS. Efficacy and safety of tranexamic acid in reducing blood loss in scoliosis surgery: a systematic review and meta-analysis. Eur Spine J. 2017;26(1):131–9.CrossRefGoogle Scholar
  28. 28.
    Li G, Sun TW, Luo G, Zhang C. Efficacy of antifibrinolytic agents on surgical bleeding and transfusion requirements in spine surgery: a meta-analysis. Eur Spine J. 2017;26(1):140–54.CrossRefGoogle Scholar
  29. 29.
    Yang B, Li H, Wang D, He X, Zhang C, Yang P. Systematic review and meta-analysis of perioperative intravenous tranexamic acid use in spinal surgery. PLoS One. 2013;8(2):e55436.CrossRefGoogle Scholar
  30. 30.
    Phan K, Dunn AE, Kim JS, Capua JD, Somani S, Kothari P, et al. Impact of preoperative anemia on outcomes in adults undergoing elective posterior cervical fusion. Global Spine J. 2017;7(8):787–93.CrossRefGoogle Scholar
  31. 31.
    Qureshi R, Puvanesarajah V, Jain A, Hassanzadeh H. Perioperative management of blood loss in spine surgery. Clin Spine Surg. 2017;30(9):383–8.CrossRefGoogle Scholar
  32. 32.
    Epstein NE. Bloodless spinal surgery: a review of the normovolemic hemodilution technique. Surg Neurol. 2008;70(6):614–8.CrossRefGoogle Scholar
  33. 33.
    American Society of Anesthesiologists Task Force on Perioperative Visual Loss. Practice advisory for perioperative visual loss associated with spine surgery: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Visual Loss. Anesthesiology. 2012;116(2):274–85.CrossRefGoogle Scholar
  34. 34.
    Manrique Espinel AM, Feldman JM, Nelson S, Smaliak T, Flynn JM, Nicolson SC. Anaphylaxis to surgiflo during posterior spinal fusion in an adolescent status post truncus arteriosus repair: a case report. A A Case Rep. 2017;10(6):129–32.  https://doi.org/10.1213/xaa.0000000000000646.CrossRefGoogle Scholar
  35. 35.
    Ullrich PF Jr, Keene JS, Hogan KJ, Roecker EB. Results of hypotensive anesthesia in operative treatment of thoracolumbar fractures. J Spinal Disord. 1990;3(4):329–33.PubMedGoogle Scholar
  36. 36.
    Dutton RP. Controlled hypotension for spinal surgery. Eur Spine J. 2004;13(Suppl 1):S66–71.CrossRefGoogle Scholar
  37. 37.
    Tobias JD. Fenoldopam for controlled hypotension during spinal fusion in children and adolescents. Paediatr Anaesth. 2000;10(3):261–6.CrossRefGoogle Scholar
  38. 38.
    Nahtomi-Shick O, Kostuik JP, Winters BD, Breder CD, Sieber AN, Sieber FE. Does intraoperative fluid management in spine surgery predict intensive care unit length of stay? J Clin Anesth. 2001;13(3):208–12.CrossRefGoogle Scholar
  39. 39.
    Nicklas JY, Saugel B. Non-invasive hemodynamic monitoring for hemodynamic management in perioperative medicine. Front Med. 2017;4:209.CrossRefGoogle Scholar
  40. 40.
    Bacchin MR, Ceria CM, Giannone S, Ghisi D, Stagni G, Greggi T, Bonarelli S. Goal-directed fluid therapy based on stroke volume variation in patients undergoing major spine surgery in the prone position: a cohort study. Spine. 2016;41(18):E1131–7.CrossRefGoogle Scholar
  41. 41.
    Picard J, Bedague D, Bouzat P, Ollinet C, Albaladejo P, Bosson JL, Payen JF. Oesophageal Doppler to optimize intraoperative haemodynamics during prone position. A randomized controlled trial. Anaesth Crit Care Pain Med. 2016;35(4):255–60.CrossRefGoogle Scholar
  42. 42.
    Park J-H, Hyun S-J. Intraoperative neurophysiological monitoring in spinal surgery. World J Clin Cases. 2015;3(9):765–73.CrossRefGoogle Scholar
  43. 43.
    Nuwer MR, Dawson EG, Carlson LG, Kanim LEA, Sherman JE. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96(1):6–11.CrossRefGoogle Scholar
  44. 44.
    Trafidlo T, Gaszynski T, Gaszynski W, Nowakowska-Domagala K. Intraoperative monitoring of cerebral NIRS oximetry leads to better postoperative cognitive performance: a pilot study. Int J Surg. 2015;16(Pt A):23–30.CrossRefGoogle Scholar
  45. 45.
    Zorrilla-Vaca A, Healy RJ, Grant M, Joshi B, Rivera-Lara L, Brown CH, Mirski MA. Intraoperative cerebral oximetry-based management for optimizing perioperative outcomes: a meta-analysis of randomized controlled trials. Can J Anesth. 2018;65(5):529–42.CrossRefGoogle Scholar
  46. 46.
    Deiner S, Chu I, Mahanian M, Lin HM, Hecht AC, Silverstein JH. Prone position is associated with mild cerebral oxygen desaturation in elderly surgical patients. PLoS One. 2014;9(9):e106387.CrossRefGoogle Scholar
  47. 47.
    Nazemi AK, Gowd AK, Carmouche JJ, Kates SL, Albert TJ, Behrend CJ. Prevention and management of postoperative delirium in elderly patients following elective spinal surgery. Clin Spine Surg. 2017;30(3):112–9.CrossRefGoogle Scholar
  48. 48.
    Li YN, Zhang Q, Yin CP, Guo YY, Huo SP, Wang L, Wang QJ. Effects of nimodipine on postoperative delirium in elderly under general anesthesia: a prospective, randomized, controlled clinical trial. Medicine. 2017;96(19):e6849.CrossRefGoogle Scholar
  49. 49.
    Lee LA, Roth S, Posner KL, Cheney FW, Caplan RA, Newman NJ, Domino KB. The American Society of Anesthesiologists Postoperative Visual Loss Registry: analysis of 93 spine surgery cases with postoperative visual loss. Anesthesiology. 2006;105(4):652–9.CrossRefGoogle Scholar
  50. 50.
    Warner MA. Postoperative visual loss: experts, data, and practice. Anesthesiology. 2006;105(4):641–2.CrossRefGoogle Scholar
  51. 51.
    Larson CP Jr. Excessive crystalloid infusion may contribute to ischemic optic neuropathy. Anesthesiology. 2007;106(6):1249.. author reply 1251–2.CrossRefGoogle Scholar
  52. 52.
    Kurd MF, Kreitz T, Schroeder G, Vaccaro AR. The role of multimodal analgesia in spine surgery. J Am Acad Orthop Surg. 2017;25(4):260–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Andres Zorrilla-Vaca
    • 1
    Email author
  • Michael C. Grant
    • 2
  • Marek A. Mirski
    • 2
  1. 1.Department of AnesthesiologyUniversidad del Valle, School of MedicineCaliColombia
  2. 2.Department of Anesthesiology and Critical Care MedicineThe Johns Hopkins HospitalBaltimoreUSA

Personalised recommendations