CMOS-Compatible Si-Based Polarization Splitter-Rotator

  • Jing WangEmail author
Part of the Springer Theses book series (Springer Theses)


In the past, the research on silicon-based optical interconnections was mainly focused to implement various optical functional devices on silicon, such as silicon-based electrically-pumped laser, electro-optic modulator, photo-detector, WDM device and MDM device. In addition to on-chip optical interconnections, other kinds of optical interconnections inevitably need to connect to the outside world.


  1. 1.
    Wang Z, Dai D, He S (2007) Polarization-insensitive ultrasmall microring resonator design based on optimized Si sandwich nanowires. IEEE Photonics Technol Lett 19:1580–1582CrossRefGoogle Scholar
  2. 2.
    Lang T, He JJ, Kuang JG, He S (2007) Birefringence compensated AWG demultiplexer with angled star couplers. Opt Express 15:15022–15028CrossRefGoogle Scholar
  3. 3.
    Lim ST, Png CE, Ong EA, Ang YL (2007) Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments. Opt Express 15:11061–11072CrossRefGoogle Scholar
  4. 4.
    Barwicz T, Watts MR, Popović MA, Rakich PT, Socci L, Kärtner FX, Ippen EP, Smith HI (2007) Polarization-transparent microphotonic devices in the strong confinement limit. Nat Photonics 1:57–60CrossRefGoogle Scholar
  5. 5.
    Watts MR, Haus HA (2005) Integrated mode-evolution-based polarization rotators. Opt Lett 30:138–140CrossRefGoogle Scholar
  6. 6.
    Chen L, Doerr CR, Chen YK (2011) Compact polarization rotator on silicon for polarization-diversified circuits. Opt Lett 36:469–471CrossRefGoogle Scholar
  7. 7.
    Zhang H, Das S, Zhang J, Huang Y, Li C, Chen S, Zhou H, Yu M, Guo-Qiang Lo P, Thong JT (2012) Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics. Appl Phys Lett 101:021105Google Scholar
  8. 8.
    Komatsu MA, Saitoh K, Koshiba M (2012) Compact polarization rotator based on surface plasmon polariton with low insertion loss. IEEE Photonics J 4:707–714CrossRefGoogle Scholar
  9. 9.
    Leung DMH, Rahman BMA, Grattan KTV (2011) Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator. IEEE Photonics J 3:381–389CrossRefGoogle Scholar
  10. 10.
    Deng H, Yevick DO, Brooks C, Jessop PE (2006) Fabrication tolerance of asymmetric silicon-on-insulator polarization rotators. J Opt Soc Am A 23:1741–1745CrossRefGoogle Scholar
  11. 11.
    Wang Z, Dai D (2008) Ultrasmall Si-nanowire-based polarization rotator. J Opt Soc Am B 25:747–753CrossRefGoogle Scholar
  12. 12.
    Cao T, Chen S, Fei Y, Zhang L, Xu QY (2013) Ultra-compact and fabrication-tolerant polarization rotator based on a bend asymmetric-slab waveguide. Appl Opt 52:990–996CrossRefGoogle Scholar
  13. 13.
    Gao L, Huo Y, Harris JS, Zhou Z (2013) Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide. IEEE Photonics Technol Lett 25:2081–2084CrossRefGoogle Scholar
  14. 14.
    Deng H, Yevick DO, Brooks C, Jessop PE (2005) Design rules for slanted-angle polarization rotators. J Lightwave Technol 23:432–445CrossRefGoogle Scholar
  15. 15.
    Deng H, Yevick DO, Chaudhuri SK (2005) Bending characteristics of asymmetric SOI polarization rotators. IEEE Photonics Technol Lett 17:2113–2115CrossRefGoogle Scholar
  16. 16.
    Aamer M, Gutierrez AM, Brimont A, Vermeulen D, Roelkens G, Fedeli JM, Hakansson A, Sanchis P (2012) CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section. IEEE Photonics Technol Lett 24:2031–2034CrossRefGoogle Scholar
  17. 17.
    Vermeulen D, Verheyen P, Absil P, Bogaerts W, Van Thourhout D, Roelkens G (2012) Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay. IEEE Photonics Technol Lett 24:482–484CrossRefGoogle Scholar
  18. 18.
    Zhang J, Yu M, Lo G, Kwong DL (2010) Silicon waveguide-based mode-evolution polarization rotator. In: Silicon photonics and photonic integrated circuits II, vol 7719Google Scholar
  19. 19.
    Zhang J, Zhu S, Zhang H, Chen S, Lo GQ, Kwong DL (2011) An ultracompact surface plasmon polariton-effect-based polarization rotator. IEEE Photonics Technol Lett 23:1606–1608CrossRefGoogle Scholar
  20. 20.
    Fei Y, Zhang L, Cao T, Cao Y, Chen S (2013) High efficiency broadband polarization converter based on tapered slot waveguide. IEEE Photonics Technol Lett 25:879–881CrossRefGoogle Scholar
  21. 21.
    Liu L, Ding Y, Yvind K, Hvam JM (2011) Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits. Opt Express 19:12646–12651CrossRefGoogle Scholar
  22. 22.
    Ding Y, Liu L, Peucheret C, Xu J, Ou H, Yvind K, Zhang X, Huang D (2012) Towards polarization diversity on the SOI platform with simple fabrication process. IEEE Photonics Technol Lett 23:1808–1810CrossRefGoogle Scholar
  23. 23.
    Ding Y, Liu L, Peucheret C, Ou H (2012) Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler. Opt Express 20:20021–20027CrossRefGoogle Scholar
  24. 24.
    Ding Y, Ou H, Peucheret C (2013) Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process. Opt Lett 38:1227–1229CrossRefGoogle Scholar
  25. 25.
    Ding Y, Huang B, Ou H, Da Ros F, Peucheret C (2013) Polarization diversity DPSK demodulator on the silicon-on-insulator platform with simple fabrication. Opt Express 21:7828–7834CrossRefGoogle Scholar
  26. 26.
    Dai D, Bowers JE (2011) Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires. Opt Express 19:10940–10949CrossRefGoogle Scholar
  27. 27.
    Fei Y, Zhang L, Cao T, Cao Y, Chen S (2012) Ultracompact polarization splitter-rotator based on an asymmetric directional coupler. Appl Opt 51:8257–8261CrossRefGoogle Scholar
  28. 28.
    Sacher WD, Barwicz T, Taylor BJ, Poon JK (2014) Polarization rotator-splitters in standard active silicon photonics platforms. Opt Express 22:3777–3786CrossRefGoogle Scholar
  29. 29.
    Guan H, Novack A, Streshinsky M, Shi R, Fang Q, Lim AEJ, Lo GQ, Baehr-Jones T, Hochberg M (2014) CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler. Opt Express 22:2489–2496CrossRefGoogle Scholar
  30. 30.
    Guan H, Novack A, Streshinsky M, Shi R, Liu Y, Fang Q, Lo GQ, Baehr-Jones T, Hochberg M (2014) High-efficiency low-crosstalk 1310-nm polarization splitter and rotator. IEEE Photonics Technol Lett 26:925–928Google Scholar
  31. 31.
    Guan H, Fang Q, Lo GQ, Bergman K (2015) High-efficiency biwavelength polarization splitter-rotator on the SOI platform. IEEE Photonics Technol Lett 27:518–521CrossRefGoogle Scholar
  32. 32.
    Xiong Y, Xu DX, Schmid JH, Cheben P, Janz S, Winnie NY (2014) Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler. Opt Express 22:17458–17465CrossRefGoogle Scholar
  33. 33.
    Xiong Y, Wangemert-Prez JG, Xu DX, Schmid JH, Cheben P, Winnie NY (2014) Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance. Opt Lett 39:6931–6934CrossRefGoogle Scholar
  34. 34.
    Yin M, Deng Q, Li Y, Wang X, Li H (2015) Ultrashort and low-loss polarization rotators utilizing hybrid plasmonic-dielectric couplers. IEEE Photonics Technol Lett 27:229–232CrossRefGoogle Scholar
  35. 35.
    Wang J, Niu B, Sheng Z, Wu A, Wang X, Zou S, Qi M, Gan F (2014) Design of a SiO\(_2\) top-cladding and compact polarization splitter-rotator based on a rib directional coupler. Opt Express 22:4137–4143Google Scholar
  36. 36.
    Dai D, Tang Y, Bowers JE (2012) Mode conversion in tapered submicron silicon ridge optical waveguides. Opt Express 20:13425–13439CrossRefGoogle Scholar
  37. 37.
    Luyssaert B, Bienstman P, Vandersteegen P, Dumon P, Baets R (2005) Efficient nonadiabatic planar waveguide tapers. J Lightwave Technol 23:2462–2468CrossRefGoogle Scholar
  38. 38.
    Zou J, Yu Y, Ye M, Liu L, Deng S, Xu X, Zhang X (2014) Short and efficient mode-size converter designed by segmented-stepwise method. Opt Lett 39:6273–6276CrossRefGoogle Scholar
  39. 39.
    Wang J, Niu B, Sheng Z, Wu A, Li W, Wang X, Zou S, Qi M, Gan F (2014) Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction. Opt Express 22:13565–13571CrossRefGoogle Scholar
  40. 40.
    Vermeulen D, Van Acoleyen K, Ghosh S, De Cort W, Yebo NA, Hallynck E, De Vos K, Debackere P, Dumon P, Bogaerts W, Roelkens G (2010) Efficient tapering to the fundamental quasi-TM mode in asymmetrical waveguides. In: 15th European conference on integrated opticsGoogle Scholar
  41. 41.
    Wang J, Qi M, Xuan Y, Huang H, Li Y, Li M, Chen X, Jia Q, Sheng Z, Wu A, Li W (2014) Proposal for fabrication-tolerant SOI polarization splitter-rotator based on cascaded MMI couplers and an assisted bi-level taper. Opt Express 22:27869–27879CrossRefGoogle Scholar
  42. 42.
    Soldano LB, Pennings EC (1995) Optical multi-mode interference devices based on self-imaging: principles and applications. J Lightwave Technol 13:615–627CrossRefGoogle Scholar
  43. 43.
    Kawaguchi Y, Tsutsumi K (2002) Mode multiplexing and demultiplexing devices using multimode interference couplers. Electron Lett 38:1701–1702CrossRefGoogle Scholar
  44. 44.
    Ye M, Yu Y, Zou J, Yang W, Zhang X (2014) On-chip multiplexing conversion between wavelength division multiplexing-polarization division multiplexing and wavelength division multiplexing-mode division multiplexing. Opt Lett 39:758–761CrossRefGoogle Scholar
  45. 45.
    Uematsu T, Ishizaka Y, Kawaguchi Y, Saitoh K, Koshiba M (2012) Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Lightwave Technol 30:2421–2426CrossRefGoogle Scholar
  46. 46.
    Maese-Novo A, Halir R, Romero-García S, Pérez-Galacho D, Zavargo-Peche L, Ortega-Moñux A, Molina-Fernández I, Wangüemert-Pérez JG, Cheben P (2013) Wavelength independent multimode interference coupler. Opt Express 21:7033–7040CrossRefGoogle Scholar
  47. 47.
    Qiu C, Sheng Z, Li H, Liu W, Li L, Pang A, Wu A, Wang X, Zou S, Gan F (2014) Fabrication, characterization and loss analysis of silicon nanowaveguides. J Lightwave Technol 32:2303–2307CrossRefGoogle Scholar
  48. 48.
    Sheng Z, Wang Z, Qiu C, Li L, Pang A, Wu A, Wang X, Zou S, Gan F (2012) A compact and low-loss MMI coupler fabricated with CMOS technology. IEEE Photonics J 4:2272–2277Google Scholar
  49. 49.
    Lin PT, Singh V, Wang J, Lin H, Hu J, Richardson K, Musgraves JD, Luzinov I, Hensley J, Kimerling LC, Agarwal A (2013) Si-CMOS compatible materials and devices for mid-IR microphotonics. Opt Mater Express 3:1474–1487CrossRefGoogle Scholar
  50. 50.
    Nedeljkovic M, Khokhar AZ, Hu Y, Chen X, Penades JS, Stankovic S, Chong HMH, Thomson DJ, Gardes FY, Reed GT, Mashanovich GZ (2013) Silicon photonic devices and platforms for the mid-infrared. Opt Mater Express 3:1205–1214CrossRefGoogle Scholar
  51. 51.
    Shankar R, Lončar M (2014) Silicon photonic devices for mid-infrared applications. Nanophotonics 3:4–5CrossRefGoogle Scholar
  52. 52.
    Roelkens G, Dave UD, Gassenq A, Hattasan N, Hu C, Kuyken B, Leo F, Malik A, Muneeb M, Ryckeboer E, Sanchez D (2014) Silicon-based photonic integration beyond the telecommunication wavelength range. IEEE J Sel Top Quantum Electron 20:394–404Google Scholar
  53. 53.
    Milosevic MM, Nedeljkovic M, Ben Masaud TM, Jaberansary E, Chong HM, Emerson NG, Reed GT, Mashanovich GZ (2012) Silicon waveguides and devices for the mid-infrared. Appl Phys Lett 101:121105CrossRefGoogle Scholar
  54. 54.
    Xia Y, Qiu C, Zhang X, Gao W, Shu J, Xu Q (2013) Suspended Si ring resonator for mid-IR application. Opt Lett 38:1122–1124CrossRefGoogle Scholar
  55. 55.
    Van Camp MA, Assefa S, Gill DM, Barwicz T, Shank SM, Rice PM, Topuria T, Green WM (2012) Demonstration of electrooptic modulation at 2165 nm using a silicon Mach-Zehnder interferometer. Opt Express 20:28009–28016Google Scholar
  56. 56.
    Nedeljkovic M, Stankovic S, Mitchell CJ, Khokhar AZ, Reynolds SA, Thomson DJ, Gardes FY, Littlejohns CG, Reed GT, Mashanovich GZ (2014). Mid-infrared thermo-optic modulators in SOI. IEEE Photonics Technol Lett 26:1352–1355CrossRefGoogle Scholar
  57. 57.
    Souhan B, Grote RR, Chen CP, Huang HC, Driscoll JB, Lu M, Stein A, Bakhru H, Bergman K, Green WM, Osgood RM (2014) Si\(^+\)-implanted Si-wire waveguide photodetectors for the mid-infrared. Opt Express 22:27415–27424Google Scholar
  58. 58.
    Muneeb M, Chen X, Verheyen P, Lepage G, Pathak S, Ryckeboer E, Malik A, Kuyken B, Nedeljkovic M, Van Campenhout J, Mashanovich GZ (2013) Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8 \(\upmu \)m. Opt Express 21:11659–11669Google Scholar
  59. 59.
    Hu Y, Li T, Thomson DJ, Chen X, Penades JS, Khokhar AZ, Mitchell CJ, Reed GT, Mashanovich GZ (2014) Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform. Opt Lett 39:1406–1409CrossRefGoogle Scholar
  60. 60.
    Cheng Z, Chen X, Wong CY, Xu K, Fung CK, Chen YM, Tsang HK (2012) Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide. Opt Lett 37:1217–1219CrossRefGoogle Scholar
  61. 61.
    Lin PT, Singh V, Lin HYG, Tiwald T, Kimerling LC, Agarwal AM (2013) Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics. Adv Opt Mater 1:732–739CrossRefGoogle Scholar
  62. 62.
    Tai Lin P, Singh V, Kimerling L, Murthy Agarwal A (2013) Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics. Appl Phys Lett 102:251121CrossRefGoogle Scholar
  63. 63.
    Soref R (2010) Mid-infrared photonics in silicon and germanium. Nat Photonics 4:495–497CrossRefGoogle Scholar
  64. 64.
    Sacher WD, Huang Y, Ding L, Barwicz T, Mikkelsen JC, Taylor BJ, Lo GQ, Poon JK (2014) Polarization rotator-splitters and controllers in a Si\(_3\)\(_4\) 4-on-SOI integrated photonics platform. Opt Express 22:11167–11174Google Scholar
  65. 65.
    Kischkat J, Peters S, Gruska B, Semtsiv M, Chashnikova M, Klinkmüller M, Fedosenko O, Machulik S, Aleksandrova A, Monastyrskyi G, Flores Y (2012) Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl Opt 51:6789–6798CrossRefGoogle Scholar
  66. 66.
    Wang J, Lee C, Niu B, Huang H, Li Y, Li M, Chen X, Sheng Z, Wu A, Li W, Wang X (2015) A silicon-on-insulator polarization diversity scheme in the mid-infrared. Opt Express 23:15029–15037CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Optixpan Semiconductor Inc.ShenzhenChina

Personalised recommendations