Advertisement

CMOS-Compatible Advanced Multiplexing Technology

  • Jing Wang
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we study the advanced multiplexing scheme in CMOS-compatible silicon-based optical interconnection. First, we introduce the latest progress of the three most widely used multiplexing schemes, WDM, polarization multiplexing (PDM) and MDM. Then the design theory, layout drawing and experimental validation of AWG for DWDM applications were studied. Then two novel polarization beam splitter (PBS) and MDM devices for ultra-broadband applications are studied, and their performance and processing tolerance are analyzed. The multiplexing of information is the most commonly used technology to improve the communication capacity. The typical multiplexing technology includes time, wavelength, mode, polarization and orbital angular momentum [1, 2]. In this chapter, we study three multiplexing technology for silicon optical interconnections, which are wavelength-division multiplexing (WDM), polarization-division multiplexing (PDM) and mode-division multiplexing (MDM).

References

  1. 1.
    Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S (2013) Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340:1545–1548CrossRefGoogle Scholar
  2. 2.
    Wang J, Yang JY, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner AE (2012) Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 6:488–496CrossRefGoogle Scholar
  3. 3.
    Smit MK (1988) New focusing and dispersive planar component based on an optical phased array. Electron Lett 24:385–386CrossRefGoogle Scholar
  4. 4.
    Adar R, Henry CH, Dragone C, Kistler RC, Milbrodt MA (1993) Broad-band array multiplexers made with silica waveguides on silicon. J Lightw Technol 11:212–219CrossRefGoogle Scholar
  5. 5.
    Malik A, Muneeb M, Pathak S, Shimura Y, Van Campenhout J, Loo R, Roelkens G (2013) Broad-band array multiplexers made with silica waveguides on silicon. IEEE Photonics Technol Lett 25:1805–1808CrossRefGoogle Scholar
  6. 6.
    Fukazawa T, Ohno F, Baba T (2004) Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides. Jpn J Appl Phys 43:L673CrossRefGoogle Scholar
  7. 7.
    Zirngibl M, Dragone C, Joyner CH (1992) Demonstration of a 15\(\times \)15 arrayed waveguide multiplexer on InP. IEEE Photonics Technol Lett 4:1250–1253CrossRefGoogle Scholar
  8. 8.
    Yang B, Zhu Y, Jiao Y, Yang L, Sheng Z, He S, Dai D (2011) Compact arrayed waveguide grating devices based on small SU-8 strip waveguides. J Lightw Technol 29:2009–2014CrossRefGoogle Scholar
  9. 9.
    Okayama H, Kawahara M, Kamijoh T (1996) Reflective waveguide array demultiplexer in LiNbO\(_3\). J Lightw Technol 14:985–990CrossRefGoogle Scholar
  10. 10.
    Liu WJ, Lai YC, Weng MH, Chen CM, Lee PH (2005) Simulation and fabrication of silicon oxynitride array waveguide grating for optical communication. In: Optical components and materials II, pp 43–54Google Scholar
  11. 11.
    Dai D, Wang Z, Bauters JF, Tien MC, Heck MJ, Blumenthal DJ, Bowers JE (2011) Low-loss Si\(_3\)N\(_4\) arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides. Opt Express 19:14130–14136CrossRefGoogle Scholar
  12. 12.
    Muneeb M, Chen X, Verheyen P, Lepage G, Pathak S, Ryckeboer E, Malik A, Kuyken B, Nedeljkovic M, Van Campenhout J, Mashanovich GZ (2013) Demonstration of silicon-on-insulator mid-infrared spectrometers operating at 3.8 \(\upmu \)m. Opt Express 21:11659–11669Google Scholar
  13. 13.
    Sasaki K, Ohno F, Motegi A, Baba T (2005) Arrayed waveguide grating of 70\(\times \)60 \(\upmu \)m\(^2\) size based on Si photonic wire waveguides. Electron Lett 41:801–802CrossRefGoogle Scholar
  14. 14.
    Ohno F, Sasaki K, Motegi A, Baba T (2006) Reduction in sidelobe level in ultracompact arrayed waveguide grating demultiplexer based on Si wire waveguide. Jpn J Appl Phys 45:6126CrossRefGoogle Scholar
  15. 15.
    Dumon P, Bogaerts W, Van Thourhout D, Taillaert D, Wiaux V, Beckx S, Wouters J, Baets R (2004) Wavelength-selective components in SOI photonic wires fabricated with deep UV lithography. In: IEEE 1st international conference on group IV photonics, pp 28–30Google Scholar
  16. 16.
    Dumon P, Bogaerts W, Van Thourhout D, Taillaert D, Baets R, Wouters J, Beckx S, Jaenen P. (2006) Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array. Opt Express 14:664–669CrossRefGoogle Scholar
  17. 17.
    Bogaerts W, Dumon P, Van Thourhout D, Taillaert D, Jaenen P, Wouters J, Beckx S, Wiaux V, Baets RG (2006) Compact wavelength-selective functions in silicon-on-insulator photonic wires. IEEE J Sel Top Quantum Electron 12:1394–1401CrossRefGoogle Scholar
  18. 18.
    Bogaerts W, Selvaraja SK, Dumon P, Brouckaert J, De Vos K, Van Thourhout D, Baets R (2010) Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J Sel Top Quantum Electron 16:33–44CrossRefGoogle Scholar
  19. 19.
    Pathak S, Vanslembrouck M, Dumon P, Van Thourhout D, Bogaerts W (2011) Compact 16\(\times \)16 channels routers based on silicon-on-insulator AWGs. In: 16th annual symposium of the IEEE photonics benelux chapter, pp 101–104Google Scholar
  20. 20.
    Wang L, Bogaerts W, Dumon P, Selvaraja SK, Teng J, Pathak S, Han X, Wang J, Jian X, Zhao M, Baets R (2012) Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides. Appl Opt 51:1251–1256CrossRefGoogle Scholar
  21. 21.
    Pathak S, Vanslembrouck M, Dumon P, Van Thourhout D, Bogaerts W (2012) Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs. Opt Express 20:B493–B500CrossRefGoogle Scholar
  22. 22.
    Pathak S, Vanslembrouck M, Dumon P, Van Thourhout D, Bogaerts W (2013) Optimized silicon AWG with flattened spectral response using an MMI aperture. J Lightw Technol 31:87–93CrossRefGoogle Scholar
  23. 23.
    Pathak S, Van Thourhout D, Bogaerts W (2013) Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications. Opt Lett 38:2961–2964CrossRefGoogle Scholar
  24. 24.
    Pathak S, Vanslembrouck M, Dumon P, Van Thourhout D, Verheyen P, Lepage G, Absil P, Bogaerts W (2014) Effect of mask discretization on performance of silicon arrayed waveguide gratings. IEEE Photonics Technol Lett 26:718–721CrossRefGoogle Scholar
  25. 25.
    Pathak S, Dumon P, Van Thourhout D, Bogaerts W (2014) Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator. IEEE Photonics J 6:4900109CrossRefGoogle Scholar
  26. 26.
    Kim DJ, Lee JM, Song JH, Pyo J, Kim G (2008) Crosstalk reduction in a shallow-etched silicon nanowire AWG. IEEE Photonics Technol Lett 20:1615–1617CrossRefGoogle Scholar
  27. 27.
    Kim DJ, Pyo J, Kim G (2009) Center wavelength uniformity of shallow-etched silicon photonic wire AWG. In: IEEE 6th international conference on group IV photonics, pp 128–130Google Scholar
  28. 28.
    Cheung ST, Guan B, Djordjevic SS, Okamoto K, Yoo SB (2012) Low-loss and high contrast silicon-on-insulator (SOI) arrayed waveguide grating. In: CLEO: science and innovationsGoogle Scholar
  29. 29.
    Cheung S, Su T, Okamoto K, Yoo SJB (2014) Ultra-compact silicon photonic 512\(\times \)512 25 GHz arrayed waveguide grating router. IEEE J Sel Top Quantum Electron 20:310–316CrossRefGoogle Scholar
  30. 30.
    Okamoto K, Ishida K (2013) Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors. Opt Lett 38:3530–3533CrossRefGoogle Scholar
  31. 31.
    Okamoto K (2014) Wavelength-division-multiplexing devices in thin SOI: advances and prospects. IEEE J Sel Top Quantum Electron 20:248–257CrossRefGoogle Scholar
  32. 32.
    Dai D, He S (2006) Ultrasmall overlapped arrayed-waveguide grating based on Si nanowire waveguides for dense wavelength division demultiplexing. IEEE J Sel Top Quantum Electron 12:1301–1305CrossRefGoogle Scholar
  33. 33.
    Dai D, He S (2006) Novel ultracompact Si-nanowire-based arrayed-waveguide grating with microbends. Opt Express 14:5260–5265CrossRefGoogle Scholar
  34. 34.
    Dai D, Liu L, Wosinski L, He SAHS (2006) Design and fabrication of ultra-small overlapped AWG demultiplexer based on \(\alpha \)-Si nanowire waveguides. Electron Lett 42:400–402CrossRefGoogle Scholar
  35. 35.
    Fu X, Dai D (2011) Ultra-small Si-nanowire-based 400 GHz-spacing 15\(\times \)15 arrayed-waveguide grating router with microbends. Electron Lett 47:266–268CrossRefGoogle Scholar
  36. 36.
    Chen S, Fu X, Wang J, Shi Y, He S, Dai D (2015) Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach-Zehnder interferometer. J Lightw Technol 33:2279–2285CrossRefGoogle Scholar
  37. 37.
    Chen S, Shi Y, He S, Dai D (2015) Compact monolithically-integrated hybrid (de) multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems. Opt Express 23:12840–12849CrossRefGoogle Scholar
  38. 38.
    Lang T, He JJ, Kuang JG, He S (2007) Birefringence compensated AWG demultiplexer with angled star couplers. Opt Express 15:15022–15028CrossRefGoogle Scholar
  39. 39.
    Zou J, Lang T, Wang L, He JJ (2011) Uniform polarization-dispersion compensation of all channels in highly birefringent silicon nanowire-based arrayed waveguide grating. IEEE Photonics Technol Lett 23:1787–1789CrossRefGoogle Scholar
  40. 40.
    Zou J, Jiang X, Xia X, Lang T, He JJ (2013) Ultra-compact birefringence-compensated arrayed waveguide grating triplexer based on silicon-on-insulator. J Lightw Technol 31:1935–1940CrossRefGoogle Scholar
  41. 41.
    Zou J, Xia X, Chen G, Lang T, He JJ (2014) Birefringence compensated silicon nanowire arrayed waveguide grating for CWDM optical interconnects. Opt Lett 39:1834–1837CrossRefGoogle Scholar
  42. 42.
    Ye T, Fu Y, Qiao L, Chu T (2014) Low-crosstalk Si arrayed waveguide grating with parabolic tapers. Opt Express 22:31899–31906CrossRefGoogle Scholar
  43. 43.
    Zhang J, An J, Zhao L, Song S, Wang L, Li J, Wang H, Wu Y, Hu X (2011) Ultra-compact triplexing filters based on SOI nanowire AWGs. J Semicond 32:044009CrossRefGoogle Scholar
  44. 44.
    Lei Z, Junming A, Jiashun Z, Shijiao S, Yuanda W, Xiongwei H (2011) 16 channel 200 GHz arrayed waveguide grating based on Si nanowire waveguides. J Semicond 32:024010CrossRefGoogle Scholar
  45. 45.
    Zhao L, An J, Zhang J, Song S, Wu Y, Hu X (2010) Theoretical analysis of a novel polarization-insensitive AWG demultiplexer based on Si nanowire and slot waveguides. In: Optoelectronic devices and integration III, pp 78472AGoogle Scholar
  46. 46.
    Huang H, Ho ST, Huang D, Tu Y, Liu W (2010) Design of temperature-independent arrayed waveguide gratings based on the combination of multiple types of waveguide. Appl Opt 49:3025–3034CrossRefGoogle Scholar
  47. 47.
    Li H, Li E, Liu Z, Wei K, Dong X, Bai Y (2012) Design of 1\(\times \)8 silicon nanowire arrayed waveguide grating for on-chip arrayed waveguide grating demodulation integration microsystem. Opt Eng 51:123001CrossRefGoogle Scholar
  48. 48.
    Li H, Bai Y, Dong X, Li E, Li Y, Liu Y, Zhou W (2013) Optimal design of an ultrasmall SOI-based 1\(\times \)8 flat-top AWG by using an MMI. Sci World JGoogle Scholar
  49. 49.
    Li H, Bai Y, Dong X, Li E, Li Y, Zhou W, Liu Y (2013) Practical fabrication and analysis of an optimized compact eight-channel silicon arrayed-waveguide grating. Opt Eng 52:064602CrossRefGoogle Scholar
  50. 50.
    Li H, Li Y, Li E, Dong X, Bai Y, Liu Y, Zhou W (2013) Temperature-insensitive arrayed waveguide grating demodulation technique for fiber Bragg grating sensors. Opt Laser Technol 51:77–81CrossRefGoogle Scholar
  51. 51.
    Li H, Zhou W, Liu Y, Dong X, Zhang C, Miao C, Zhang M, Li E, Tang C (2014) Preliminary investigation of an SOI-based arrayed waveguide grating demodulation integration microsystem. Sci Rep 4:4848Google Scholar
  52. 52.
    Yebo NA, Bogaerts W, Hens Z, Baets R (2011) On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor. IEEE Photonics Technol Lett 23:1505–1507CrossRefGoogle Scholar
  53. 53.
    Cheben P, Schmid JH, Delâge A, Densmore A, Janz S, Lamontagne B, Lapointe J, Post E, Waldron P, Xu DX (2007) A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides. Opt Express 15:2299–2306CrossRefGoogle Scholar
  54. 54.
    Cheben P, Post E, Janz S, Albert J, Laronche A, Schmid JH, Xu DX, Lamontagne B, Lapointe J, Delâge A, Densmore A (2008) Tilted fiber Bragg grating sensor interrogation system using a high-resolution silicon-on-insulator arrayed waveguide grating. Opt Lett 33:2647–2649CrossRefGoogle Scholar
  55. 55.
    Dai D, Fu X, Shi Y, He S (2010) Experimental demonstration of an ultracompact Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with photonic crystal reflectors. Opt Lett 35:2594–2596CrossRefGoogle Scholar
  56. 56.
    Shi Y, Fu X, Dai D (2010) Design and fabrication of a 200 GHz Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with optimized photonic crystal reflectors. Appl Opt 49:4859–4865CrossRefGoogle Scholar
  57. 57.
    Dai D (2005) Modeling, design and fabrication of arrayed-waveguide gratings. PhD Disseration, Zhejiang UniversityGoogle Scholar
  58. 58.
    Huang H (2010) The study of silicon photonic-wires based arrayed waveguide grating. PhD Disseration, Huazhong University of Science TechnologyGoogle Scholar
  59. 59.
    Dumon P (2007) Ultra-compact integrated optical filters in silicon-on-insulator by means of wafer-scale technology. PhD Disseration, Ghent UniversityGoogle Scholar
  60. 60.
    Pathak S (2014) Silicon nano-photonics based arrayed waveguide gratings. PhD Disseration, Ghent UniversityGoogle Scholar
  61. 61.
    Wang J, Sheng Z, Li L, Pang A, Wu A, Li W, Wang X, Zou S, Qi M, Gan F (2014) Low-loss and low-crosstalk 8\(\times \)8 silicon nanowire AWG routers fabricated with CMOS technology. Opt Express 22:9395–9403Google Scholar
  62. 62.
    Sheng Z, Dai D, He S (2007) Improve channel uniformity of an Si-nanowire AWG demultiplexer by using dual-tapered auxiliary waveguides. J Lightw Technol 25:3001–3007CrossRefGoogle Scholar
  63. 63.
    Gan F, Barwicz T, Popovic MA, Dahlem MS, Holzwarth CW, Rakich PT, Smith HI, Ippen EP, Kartner FX (2007) Maximizing the thermo-optic tuning range of silicon photonic structures. Photon Switch 67–68Google Scholar
  64. 64.
    Soole JBD, Amersfoort MR, LeBlanc HP, Andreadakis NC, Rajhel A, Caneau C, Bhat R, Koza MA, Youtsey C, Adesida I (1996) Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters. IEEE Photonics Technol Lett 8:1340–1342CrossRefGoogle Scholar
  65. 65.
    Dai D, Mei W, He S (2003) Using a tapered MMI to flatten the passband of an AWG. Opt Commun 219:233–239CrossRefGoogle Scholar
  66. 66.
    Okamoto K, Sugita A (1996) Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns. Electron Lett 32:1661CrossRefGoogle Scholar
  67. 67.
    Kiyat I, Aydinli A, Dagli N (2005) A compact silicon-on-insulator polarization splitter. IEEE Photonics Technol Lett 17:100–102CrossRefGoogle Scholar
  68. 68.
    Fukuda H, Yamada K, Tsuchizawa T, Watanabe T, Shinojima H, Itabashi SI (2006) Ultrasmall polarization splitter based on silicon wire waveguides. Opt Express 14:12401–12408CrossRefGoogle Scholar
  69. 69.
    Komatsu MA, Saitoh K, Koshiba M (2009) Design of miniaturized silicon wire and slot waveguide polarization splitter based on a resonant tunneling. Opt Express 17:19225–19233CrossRefGoogle Scholar
  70. 70.
    Yue Y, Zhang L, Yang JY, Beausoleil RG, Willner AE (2010) Silicon-on-insulator polarization splitter using two horizontally slotted waveguides. Opt Lett 35:1364–1366CrossRefGoogle Scholar
  71. 71.
    Lin S, Hu J, Crozier KB (2011) Ultracompact, broadband slot waveguide polarization splitter. Appl Phys Lett 98:151101CrossRefGoogle Scholar
  72. 72.
    Zhang H, Huang Y, Das S, Li C, Yu M, Lo PG, Hong M, Thong J (2013) Polarization splitter using horizontal slot waveguide. Opt Express 21:3363–3369CrossRefGoogle Scholar
  73. 73.
    Kim JT (2014) CMOS-compatible polarization splitter for 3-D silicon photonic integrated circuits. J Lightw Technol 32:2123–2127CrossRefGoogle Scholar
  74. 74.
    Kim DW, Lee MH, Kim Y, Kim KH (2015) Planar-type polarization beam splitter based on a bridged silicon waveguide coupler. Opt Express 23:998–1004CrossRefGoogle Scholar
  75. 75.
    Ying Z, Wang G, Zhang X, Ho HP, Huang Y (2015) Ultracompact and broadband polarization beam splitter based on polarization-dependent critical guiding condition. Opt Lett 40:2134–2137CrossRefGoogle Scholar
  76. 76.
    Rahman BMA, Somasiri N, Themistos C, Grattan KTV (2001) Design of optical polarization splitters in a single-section deeply etched MMI waveguide. Appl Phys B 73:613–618CrossRefGoogle Scholar
  77. 77.
    Hong JM, Ryu HH, Park SR, Jeong JW, Lee SG, Lee EH, Park SG, Woo D, Kim S, Beom-Hoan O (2003) Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application. IEEE Photonics Technol Lett 15:72–74Google Scholar
  78. 78.
    Shi Y, Dai D, He S (2007) Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler. IEEE Photonics Technol Lett 19:825–827CrossRefGoogle Scholar
  79. 79.
    Shi Y, Shahid N, Li M, Berrier A, He S, Anand S (2010) Experimental demonstration of an ultracompact polarization beamsplitter based on a multimode interference coupler with internal photonic crystals. Opt Eng 49:060503CrossRefGoogle Scholar
  80. 80.
    Jiao Y, Dai D, Shi Y, He S (2009) Shortened polarization beam splitters with two cascaded multimode interference sections. IEEE Photonics Technol Lett 21:1538–1540CrossRefGoogle Scholar
  81. 81.
    Yang BK, Shin SY, Zhang D (2009) Ultrashort polarization splitter using two-mode interference in silicon photonic wires. IEEE Photonics Technol Lett 21:432–434CrossRefGoogle Scholar
  82. 82.
    Hosseini A, Rahimi S, Xu X, Kwong D, Covey J, Chen RT (2011) Ultracompact and fabrication-tolerant integrated polarization splitter. Opt Lett 36:4047–4049CrossRefGoogle Scholar
  83. 83.
    Huang Y, Tu Z, Yi H, Li Y, Wang X, Hu W (2013) High extinction ratio polarization beam splitter with multimode interference coupler on SOI. Opt Commun 3017:46–49CrossRefGoogle Scholar
  84. 84.
    Xu Y, Xiao J, Sun X (2014) Compact polarization beam splitter for silicon-based slot waveguides using an asymmetrical multimode waveguide. J Lightw Technol 32:4282–4288Google Scholar
  85. 85.
    Yin M, Yang W, Li Y, Wang X, Li H (2015) CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter. Opt Commun 335:48–52CrossRefGoogle Scholar
  86. 86.
    Rajarajan M, Themistos C, Rahman BA, Grattan KT (1997) Characterization of metal-clad TE/TM mode splitters using the finite element method. J Lightw Technol 15:2264–2269CrossRefGoogle Scholar
  87. 87.
    Albrecht P, Hamacher M, Heidrich H, Hoffmann D, Nolting H, Weinert CM (1990) TE/TM mode splitters on InGaAsP/InP. IEEE Photonics Technol Lett 2:114–115CrossRefGoogle Scholar
  88. 88.
    Okuno M, Sugita A, Jinguji K, Kawachi M (1994) Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch. IEEE Photonics Technol Lett 12:625–633Google Scholar
  89. 89.
    Wei PK, Wang WS (1994) A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions. IEEE Photonics Technol Lett 6:245–248CrossRefGoogle Scholar
  90. 90.
    Van der Tol JJ, Laarhuis JH (1991) A polarization splitter on LiNbO\(_3\) using only titanium diffusion. J Lightw Technol 9:879–886CrossRefGoogle Scholar
  91. 91.
    Ghirardi F, Brandon J, Carre M, Bruno A, Menigaux L, Carenco A (1993) Polarization splitter based on modal birefringence in InP/InGaAsP optical waveguides. IEEE Photonics Technol Lett 5:1047–1049CrossRefGoogle Scholar
  92. 92.
    Wang Q, Farrell G, Semenova Y (2006) Design of integrated polarization beam splitter with liquid crystal. IEEE J Sel Top Quantum Electron 12:1349–1353CrossRefGoogle Scholar
  93. 93.
    Lin KC, Chuang WC, Lee WY (1996) Proposal and analysis of an ultrashort directional-coupler polarization splitter with an NLC coupling layer. J Lightw Technol 14:2547–2553CrossRefGoogle Scholar
  94. 94.
    Liang TK, Tsang HK (2005) Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides. IEEE Photonics Technol Lett 17:393–395CrossRefGoogle Scholar
  95. 95.
    Dai D, Wang Z, Bowers JE (2011) Considerations for the design of asymmetrical mach-zehnder interferometers used as polarization beam splitters on a submicrometer silicon-on-insulator platform. J Lightw Technol 29:1808–1817CrossRefGoogle Scholar
  96. 96.
    Dai D, Wang Z, Peters J, Bowers JE (2012) Compact polarization beam splitter using an asymmetrical mach-zehnder interferometer based on silicon-on-insulator waveguides. IEEE Photonics Technol Lett 24:673–675CrossRefGoogle Scholar
  97. 97.
    Kim S, Nordin GP, Cai J, Jiang J (2003) Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure. Opt Lett 28:2384–2386CrossRefGoogle Scholar
  98. 98.
    Tang Y, Dai D, He S (2009) Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits. IEEE Photonics Technol Lett 21:242–244CrossRefGoogle Scholar
  99. 99.
    Wang Z, Tang Y, Wosinski L, He S (2010) Experimental demonstration of a high efficiency polarization splitter based on a one-dimensional grating with a Bragg reflector underneath. IEEE Photonics Technol Lett 22:1568–1570CrossRefGoogle Scholar
  100. 100.
    Zaoui WS, Kunze A, Vogel W, Berroth M (2013) CMOS-compatible polarization splitting grating couplers with a backside metal mirror. IEEE Photonics Technol Lett 25:1395–1397CrossRefGoogle Scholar
  101. 101.
    Streshinsky M, Shi R, Novack A, Cher RT, Lim AE, Lo PG, Baehr-Jones T, Hochberg M (2013) A compact bi-wavelength polarization splitting grating coupler fabricated in a 220 nm SOI platform. Opt Express 21:31019–31028CrossRefGoogle Scholar
  102. 102.
    Zou CL, Sun FW, Dong CH, Ren XF, Cui JM, Chen XD, Han ZF, Guo GC (2011) Broadband integrated polarization beam splitter with surface plasmon. Opt Lett 36:3630–3632CrossRefGoogle Scholar
  103. 103.
    Chee J, Zhu S, Lo GQ (2012) CMOS compatible polarization splitter using hybrid plasmonic waveguide. Opt Express 20:25345–25355CrossRefGoogle Scholar
  104. 104.
    Gao L, Hu F, Wang X, Tang L, Zhou Z (2013) Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling. Appl Phys B 113:199–203CrossRefGoogle Scholar
  105. 105.
    Tan Q, Huang X, Zhou W, Yang K (2013) A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides. Sci Rep 3:2206CrossRefGoogle Scholar
  106. 106.
    Kim S, Qi M (2014) Copper nanorod array assisted silicon waveguide polarization beam splitter. Opt Express 22:9508–9516CrossRefGoogle Scholar
  107. 107.
    Ma Y, Farrell G, Semenova Y, Chan HP, Zhang H, Wu Q (2014) Low-loss, high extinction ration and ultra-compact plasmonic polarization beam splitter. IEEE Photonics Technol Lett 26:660–663CrossRefGoogle Scholar
  108. 108.
    Xu Y, Xiao J, Sun X (2015) Proposal for compact polarization splitter using asymmetrical three-Guide directional coupler. IEEE Photonics Technol Lett 27:654–657CrossRefGoogle Scholar
  109. 109.
    Dai D, Wang Z, Bowers JE (2011) Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler. Opt Lett 36:2590–2592CrossRefGoogle Scholar
  110. 110.
    Dai D, Bowers JE (2011) Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Opt Express 19:18614–18620CrossRefGoogle Scholar
  111. 111.
    Wang J, Liang D, Tang Y, Dai D, Bowers JE (2013) Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler. Opt Lett 38:4–6CrossRefGoogle Scholar
  112. 112.
    Dai D (2012) Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides. J Lightw Technol 30:3281–3287CrossRefGoogle Scholar
  113. 113.
    Wang J, Dai D (2013) Ultra-small silicon polarization beam splitter based on cascaded asymmetry directional couplers. In: Optical fiber communication conferenceGoogle Scholar
  114. 114.
    Lou F, Dai D, Wosinski L (2012) Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler. Opt Lett 37:3372–3374CrossRefGoogle Scholar
  115. 115.
    Guan X, Wu H, Shi Y, Wosinski L, Dai D (2013) Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Opt Lett 38:3005–3008CrossRefGoogle Scholar
  116. 116.
    Guan X, Wu H, Shi Y, Dai D (2014) Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Opt Lett 39:259–262CrossRefGoogle Scholar
  117. 117.
    Watts MR, Haus HA, Ippen EP (2005) Integrated mode-evolution-based polarization splitter. Opt Lett 30:967–969CrossRefGoogle Scholar
  118. 118.
    Su Z, Timurdogan E, Hosseini ES, Sun J, Leake G, Coolbaugh DD, Watts MR (2014) Four-port integrated polarizing beam splitter. Opt Lett 39:965–968CrossRefGoogle Scholar
  119. 119.
    Uematsu T, Kitayama T, Ishizaka Y, Saitoh K (2014) Ultra-broadband silicon-wire polarization beam combiner/splitter based on a wavelength insensitive coupler with a point-symmetrical configuration. IEEE Photonics J 6:4500108CrossRefGoogle Scholar
  120. 120.
    Love JD, Riesen N (2012) Single-, few-, and multimode Y-junctions. J Lightw Technol 30:304–309CrossRefGoogle Scholar
  121. 121.
    Riesen N, Love JD (2012) Design of mode-sorting asymmetric Y-junctions. Appl Opt 51:2778–2783CrossRefGoogle Scholar
  122. 122.
    Driscoll JB, Grote RR, Souhan B, Dadap JI, Lu M, Osgood RM (2013) Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett 38:1854–1856CrossRefGoogle Scholar
  123. 123.
    Driscoll JB, Grote RR., Souhan B, Dadap JI, Lu M, Osgood RM (2014) A 60 Gb/s MDM-WDM Si photonic link with \(<\) 0.7 dB power penalty per channel. Opt Express 22:18543–18555Google Scholar
  124. 124.
    Chen W, Wang P, Yang J (2013) Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt Express 21:25113–25119CrossRefGoogle Scholar
  125. 125.
    Chen W, Wang P, Yang J (2014) Optical mode interleaver based on the asymmetric multimode Y junction. IEEE Photonics Technol Lett 26:2043–2046CrossRefGoogle Scholar
  126. 126.
    Wang J, Qi M, Xuan Y, Huang H, Li Y, Li M, Chen X, Jia Q, Sheng Z, Wu A, Li W (2014) Ultrabroadband silicon-on-insulator polarization beam splitter based on cascaded mode-sorting asymmetric Y-junctions. IEEE Photonics J 6:1–8Google Scholar
  127. 127.
    Qiu C, Sheng Z, Li H, Liu W, Li L, Pang A, Wu A, Wang X, Zou S, Gan F (2014) Fabrication, characterization and loss analysis of silicon nanowaveguides. J Lightw Technol 32:2303–2307CrossRefGoogle Scholar
  128. 128.
    Zhang Y, Yang S, Lim AEJ, Lo GQ, Galland C, Baehr-Jones T, Hochberg M (2013) A compact and low loss Y-junction for submicron silicon waveguide. Opt Express 21:1310–1316CrossRefGoogle Scholar
  129. 129.
    Dai D, Bowers JE (2014) Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects. Nanophotonics 3:283–311CrossRefGoogle Scholar
  130. 130.
    Richardson DJ, Fini JM, Nelson LE (2013) Space-division multiplexing in optical fibres. Nat Photonics 7:354–362CrossRefGoogle Scholar
  131. 131.
    Van Uden RG, Correa RA, Lopez EA, Huijskens FM, Xia C, Li G, Schülzgen A, De Waardt H, Koonen AM, Okonkwo CM (2014) Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonics 8:865–870Google Scholar
  132. 132.
    Chen H, Sleiffer V, Snyder B, Kuschnerov M, van Uden R, Jung Y, Okonkwo CM, Raz O, O’Brien P, de Waardt H, Koonen T (2013) Demonstration of a photonic integrated mode coupler with MDM and WDM transmission. IEEE Photonics Technol Lett 25:2039–2042CrossRefGoogle Scholar
  133. 133.
    Ding Y, Ou H, Xu J, Peucheret C (2013) Silicon photonic integrated circuit mode multiplexer. IEEE Photonics Technol Lett 25:648–651CrossRefGoogle Scholar
  134. 134.
    Riesen N, Love JD (2013) Ultra-broadband tapered mode-selective couplers for few-mode optical fiber networks. IEEE Photonics Technol Lett 25:2501–2504CrossRefGoogle Scholar
  135. 135.
    Chen H, Van Uden R, Okonkwo C, Koonen T (2014) Compact spatial multiplexers for mode division multiplexing. Opt Express 22:31582–31594CrossRefGoogle Scholar
  136. 136.
    Gross S, Riesen N, Love JD, Withford MJ (2014) Three-dimensional ultra-broadband integrated tapered mode multiplexers. Laser Photonics Rev 8:L81–L85CrossRefGoogle Scholar
  137. 137.
    Hanzawa N, Saitoh K, Sakamoto T, Matsui T, Tsujikawa K, Koshiba M, Yamamoto F (2014) Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission. Opt Express 22:29321–29330CrossRefGoogle Scholar
  138. 138.
    Riesen N, Gross S, Love JD, Withford MJ (2014) Femtosecond direct-written integrated mode couplers. Opt Express 22:29855–29861CrossRefGoogle Scholar
  139. 139.
    Dai D, Wang J, Shi Y (2013) Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett 38:1422–1424CrossRefGoogle Scholar
  140. 140.
    Wang J, He S, Dai D (2014) On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode-and polarization-division-multiplexing. Laser Photonics Rev 8:L18–L22CrossRefGoogle Scholar
  141. 141.
    Wang J, Chen P, Chen S, Shi Y, Dai D (2014) Improved 8-channel silicon mode demultiplexer with grating polarizers. Opt Express 22:12799–12807CrossRefGoogle Scholar
  142. 142.
    Wang J, Chen S, Dai D (2014) Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Opt Lett 39:6993–6996CrossRefGoogle Scholar
  143. 143.
    Dai D, Wang J, Chen S, Wang S, He S (2015) Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength-and mode-division-multiplexing. Laser Photonics Rev 9:339–344CrossRefGoogle Scholar
  144. 144.
    Luo LW, Ophir N, Chen CP, Gabrielli LH, Poitras CB, Bergmen K, Lipson M (2014) WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun 5:1–7Google Scholar
  145. 145.
    Ding Y, Xu J, Da Ros F, Huang B, Ou H, Peucheret C (2013) On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt Express 21:10376–10382CrossRefGoogle Scholar
  146. 146.
    Qiu H, Yu H, Hu T, Jiang G, Shao H, Yu P, Yang J, Jiang X (2013) Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt Express 21:17904–17911CrossRefGoogle Scholar
  147. 147.
    Chen GFR, Wang T, Ooi KJA, Chee AKL, Ang LK, Tan DTH (2015) Wavelength selective mode division multiplexing on a silicon chip. Opt Express 23:8095–8103CrossRefGoogle Scholar
  148. 148.
    Uematsu T, Ishizaka Y, Kawaguchi Y, Saitoh K, Koshiba M (2012) Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Lightw Technol 30:2421–2426CrossRefGoogle Scholar
  149. 149.
    Li Y, Li C, Li C, Cheng B, Xue C (2014) Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides. Opt Express 22:5781–5786CrossRefGoogle Scholar
  150. 150.
    Ye M, Yu Y, Zou J, Yang W, Zhang X (2014) On-chip multiplexing conversion between wavelength division multiplexing-polarization division multiplexing and wavelength division multiplexing-mode division multiplexing. Opt Lett 39:758–761CrossRefGoogle Scholar
  151. 151.
    Xing J, Li Z, Xiao X, Yu J, Yu Y (2013) Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett 38:3468–3470CrossRefGoogle Scholar
  152. 152.
    Dorin BA, Winnie NY (2014) Two-mode division multiplexing in a silicon-on-insulator ring resonator. Opt Express 22:4547–4558CrossRefGoogle Scholar
  153. 153.
    Dai D (2014) Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects. Opt Express 22:27524–27534CrossRefGoogle Scholar
  154. 154.
    Milton AF, Burns WK (1975) Tapered velocity couplers for integrated optics: design. Appl Opt 14:1207–1212CrossRefGoogle Scholar
  155. 155.
    Riesen N, Love JD (2013) Tapered velocity mode-selective couplers. J Lightw Technol 31:2163–2169CrossRefGoogle Scholar
  156. 156.
    Wang J, Xuan Y, Qi M, Huang H, Li Y, Li M, Chen X, Sheng Z, Wu A, Li W, Wang X (2015) Broadband and fabrication-tolerant on-chip scalable mode-division multiplexing based on mode-evolution counter-tapered couplers. Opt Lett 40:1956–1959CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Optixpan Semiconductor Inc.ShenzhenChina

Personalised recommendations