Advertisement

Role of TLR4 in Sepsis

  • Jing Tang
Chapter

Abstract

Sepsis, a syndrome of physiologic pathologic and biochemical abnormalities induced by infection, is a major public health concern. The concept of sepsis changed as time goes by. According to the Third International Consensus Definitions for Sepsis and Septic Shock, sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. So far, the number of patients suffering from sepsis has been on rise. However, the diagnosis of sepsis is still difficult.

References

  1. 1.
    Vincent J, et al. Sepsis definitions: time for change. Lancet. 2013;381(9868):774–5.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Mukherjee V, Evans L. Implementation of the surviving sepsis campaign guidelines. Curr Opin Crit Care. 2017;23(5):412–6.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420(6917):885–91.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Singer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Manu Shankar-Hari DAH. Differences in impact of definitional elements on mortality precludes international comparisons of sepsis epidemiology-a cohort study illustrating the need for standardized reporting. Crit Care Med. 2016;44(12):2223–30.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Allan J, Walkey TL, Lindenauer PK. Trends in sepsis and infection sources in the United States. Ann Am Thorac Soc. 2015;12(2):216–20.CrossRefGoogle Scholar
  7. 7.
    Yuki K, Murakami N. Sepsis pathophysiology and anesthetic consideration. Cardiovasc Hematol Disord Drug Targets. 2015;15(1):57–69.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840–51.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Linde-Zwirble WT, Angus DC. Severe sepsis epidemiology: sampling, selection, and society. Crit Care. 2004;8(4):222–6.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Weber GF, Swirski FK. Immunopathogenesis of abdominal sepsis. Langenbeck Arch Surg. 2014;399(1):1–9.CrossRefGoogle Scholar
  11. 11.
    Schorr CA, Zanotti S, Dellinger RP. Severe sepsis and septic shock. Virulence. 2013;5(1):190–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Rhodes A, et al. Surviving sepsis campaign. Crit Care Med. 2017;45(3):486–552.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Opal SM, Girard TD, Ely EW. The immunopathogenesis of sepsis in elderly patients. CID. 2005;41(7):504–12.CrossRefGoogle Scholar
  14. 14.
    Henry J, Jacobsen W, Watkins LR, Hutchinson MR. Discovery of a novel site of opioid action at the innate immune pattern-recognition receptor TLR4 and its role in addiction. Int Rev Neurobiol. 2014;118:129–63.CrossRefGoogle Scholar
  15. 15.
    Shizuo Akira SU, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Anderson KV, Bokla L, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the drosophila embryo: the induction of polarity by the toll gene product. Cell. 1985;42:791–8.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. The critical role of toll-like receptors — from microbial recognition to autoimmunity: a comprehensive review. Autoimmun Rev. 2016;15(1):1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kawai T, Akira S. TLR signaling. Cell Death Differ. 2017;13:816–25.CrossRefGoogle Scholar
  19. 19.
    Takeuchi O, Hoshino K, Kawai T. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11:443–51.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Hayashi F, Smith KD, Ozinsky A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410:1099–103.PubMedCrossRefGoogle Scholar
  21. 21.
    Heil F. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science. 2004;303(5663):1526–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Sandra S, Diebold TKHH. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303:1529–31.CrossRefGoogle Scholar
  23. 23.
    Yarovinsky F, et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science. 2005;308(5728):1626–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20(1):197–216.PubMedCrossRefGoogle Scholar
  25. 25.
    Raetz CRH, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71(1):635–700.PubMedCrossRefGoogle Scholar
  26. 26.
    Kawai T, Akira S. Signaling to NF-κB by Toll-like receptors. Trends Mol Med. 2007;13(11):460–9.PubMedCrossRefGoogle Scholar
  27. 27.
    O’Neill LAJ, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7(5):353–64.PubMedCrossRefGoogle Scholar
  28. 28.
    Wright SD, Tobias PS, Ulevitch RJ. Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. J Exp Med. 1989;170:1231–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Chattopadhyay S, et al. EGFR kinase activity is required for TLR4 signaling and the septic shock response. EMBO Rep. 2015;16:1535–47.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Schumann RR, Leong SR, Flaggs GW. Structure and function of lipopolysaccharide binding protein. Science. 1990;249(4975):1429–31.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Nagai Y, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol. 2002;3(7):667–72.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol. 1995;13:437–57.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Rowe DC, et al. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. PNAS. 2006;103(16):6299–304.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    De S, et al. Erlotinib protects against LPS-induced endotoxicity because TLR4 needs EGFR to signal. Proc Natl Acad Sci. 2015;112(31):9680–5.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Lu Y, Yeh W, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42(2):145–51.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Horng T, Barton GM, Medzhitov R. TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol. 2001;2(9):835–41.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Suzuki N, Suzuki S, Duncan GS. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature. 2002;416:750–4.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Lye E, et al. The role of interleukin 1 receptor-associated kinase-4 (IRAK-4) kinase activity in IRAK-4-mediated signaling. J Biol Chem. 2004;279(39):40653–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Li S, et al. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci U S A. 2002;99(8):5567–72.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lomaga MA, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999;13(8):1015–24.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Janssens S, Beyaert R. A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends Biochem Sci. 2002;27(9):474–82.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410:37–40.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Treisman R. Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol. 1996;8:205–15.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Takaoka A, Yanai H, Kondo S. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature. 2005;434:243–9.CrossRefGoogle Scholar
  45. 45.
    Hoebe K, et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature. 2003;424:743–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Takeda K, Akira S. TLR signaling pathways. Semin Immunol. 2004;16(1):3–9.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Oganesyan G, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature. 2005;439(7073):208–11.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kagan JC, et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nat Immunol. 2008;9(4):361–8.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ibrahim ZA, et al. RAGE and TLRs: relatives, friends or neighbours? Mol Immunol. 2013;56(4):739–44.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Fritz G. RAGE: a single receptor fits multiple ligands. Trends Biochem Sci. 2011;36(12):625–32.PubMedCrossRefGoogle Scholar
  51. 51.
    Hori O, Brett J, Slattery T. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. J Biol Chem. 1995;270(43):25752–61.PubMedCrossRefGoogle Scholar
  52. 52.
    Leclerc E, et al. Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta. 2009;1793(6):993–1007.PubMedCrossRefGoogle Scholar
  53. 53.
    Taguchi A, Blood DC, Toro GD. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature. 2000;405:354–60.PubMedCrossRefGoogle Scholar
  54. 54.
    Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia. 2009;52(11):2251–63.PubMedCrossRefGoogle Scholar
  55. 55.
    Huttunen HJ, Kuja-Panula J, Rauvala H. Receptor for advanced glycation end products (RAGE) signaling induces CREB-dependent chromogranin expression during neuronal differentiation. J Biol Chem. 2002;277(41):38635–46.PubMedCrossRefGoogle Scholar
  56. 56.
    Du Yan S, Schmidt AM, Anderson GM. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors binding proteins. J Biol Chem. 1993;269(13):9889–97.Google Scholar
  57. 57.
    Hreggvidsdottir HS, Lundberg AM, Aveberger A. High mobility group box protein 1 (HMGB1)-partner molecule complexes enhance cytokine production by signaling through the partner molecule receptor. Mol Med. 2012;18:224–30.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hreggvidsdottir HS, Ostberg TH. The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation. J Leukoc Biol. 2009;86:655–62.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Yamasoba D, et al. Peripheral HMGB1-induced hyperalgesia in mice: redox state-dependent distinct roles of RAGE and TLR4. J Pharmacol Sci. 2016;130(2):139–42.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Boyd JH, et al. S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circ Res. 2008;102(10):1239–46.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Vogl T, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med. 2007;13(9):1042–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Ichikawa M, et al. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res. 2011;9(2):133–48.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    van Lent PLEM, et al. Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis. Ann Rheum Dis. 2008;67(12):1750–8.PubMedCrossRefGoogle Scholar
  64. 64.
    English AR, Voeltz GK. Rab10 GTPase regulates ER dynamics and morphology. Nat Cell Biol. 2012;15(2):169–78.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wang D, et al. Ras-related protein Rab10 facilitates TLR4 signaling by promoting replenishment of TLR4 onto the plasma membrane. Proc Natl Acad Sci. 2010;107(31):13806–11.PubMedCrossRefGoogle Scholar
  66. 66.
    Zou W, et al. RAB-10-dependent membrane transport is required for dendrite arborization. PLoS Genet. 2015;11(9):e1005484.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    David II, Stern DF. Specificity within the EGF family/ErbB receptor family signaling network. BioEssays. 1998;20:41–8.CrossRefGoogle Scholar
  68. 68.
    Morandell S, et al. Quantitative proteomics and phosphoproteomics reveal novel insights into complexity and dynamics of the EGFR signaling network. Proteomics. 2008;8(21):4383–401.PubMedCrossRefGoogle Scholar
  69. 69.
    Sun X, et al. The activation of EGFR promotes myocardial tumor necrosis factor-α production and cardiac failure in endotoxemia. Oncotarget. 2015;6(34):35478–95.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Wee P, et al. EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis. Cell Signal. 2015;27(3):638–51.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Hackel PO, et al. Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol. 1999;11(2):184–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Kuper C, Beck FX, Neuhofer W. Toll-like receptor 4 activates NF-B and MAP kinase pathways to regulate expression of proinflammatory COX-2 in renal medullary collecting duct cells. Am J Physiol Renal Physiol. 2011;302(1):F38–46.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Liu K, Anderson GP, Bozinovski S. DNA vector augments inflammation in epithelial cells via EGFR-dependent regulation of TLR4 and TLR2. Am J Respir Cell Mol Biol. 2008;39(3):305–11.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Hwang JS, et al. Deacetylation-mediated interaction of SIRT1-HMGB1 improves survival in a mouse model of endotoxemia. Sci Rep. 2015;5(1):15971.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Muller S, Ronfani L, Bianchi ME. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med. 2004;255(3):332–43.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Gardella S, et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 2002;3(10):995–1001.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29(1):139–62.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wang H, Bloom O, Zhang M. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285(5425):248–51.PubMedCrossRefGoogle Scholar
  79. 79.
    Yang H, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. PNAS. 2004;101(1):296–301.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Levy RM, et al. Systemic inflammation and remote organ injury following trauma require HMGB1. Am J Physiol Regul Integr Comp Physiol. 2007;293(4):R1538–44.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Andreas Rickenbacher JHJP. Fasting protects liver from ischemic injury through Sirt1-mediated downregulation of circulating HMGB1 in mice. J Hepatol. 2014;61:301–8.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Calandra T, et al. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med. 2000;6(2):164–70.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Calandra T, et al. Macrophage migration inhibitory factor is a critical mediator of the activation of immune cells by exotoxins of gram-positive bacteria. Proc Natl Acad Sci U S A. 1998;95(19):11383–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Calandra T, Bernhagen J, Christine M. MIF as a glucocorticoid-induced modulator of cytokine production. Nature. 1995;377(7):68–71.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Bozza M, Satoskar AR, Lin G. Targeted disruption of migration inhibitory factor gene reveals its critical role in sepsis. J Exp Med. 1999;189(2):341–6.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jing Tang
    • 1
  1. 1.Department of AnesthesiaAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina

Personalised recommendations