The Role of Mitochondrial Quality Imbalance in Multiple Organ Dysfunction Syndrome Following Severe Trauma, Shock, and Sepsis

  • Lei Kuang
  • Liangming Liu
  • Tao Li


Multiple organ dysfunction syndrome (MODS) is a life-threatening condition with high morbidity and mortality. Mitochondria are multifunctional organelles, whose failure triggers multiple organ dysfunction and is directly associated with patient’s vicious outcome. Physiologically, mitochondria undergo continuous fission, fusion, biogenesis, and mitophagy (selective mitochondrial autophagy) to maintain homeostasis, whose disruption may heavily impact the mitochondrial quality and result in damaged cell and organ functions under pathological conditions such as severe trauma, shock, and sepsis. Mitochondrial quality imbalance is a key step in MODS process, and rebalancing the mitochondrial quality may be a promising approach in the treatment of MODS following severe trauma, shock, and sepsis.


MODS Mitochondrial quality Intensive care medicine Severe trauma Mitochondrial dynamics Mitophagy 


  1. 1.
    Ulvik A, Kvale R, Wentzel-Larsen T, Flaatten H. Multiple organ failure after trauma affects even long-term survival and functional status. Crit Care. 2007;11(5):R95.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A. 2015;112(36):11389–94.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013;6:19.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Rossier MF. T channels and steroid biosynthesis: in search of a link with mitochondria. Cell Calcium. 2006;40(2):155–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Jang DH, Greenwood JC, Spyres MB, Eckmann DM. Measurement of mitochondrial respiration and motility in acute care: sepsis, trauma, and poisoning. J Intensive Care Med. 2017;32(1):86–94.PubMedCrossRefGoogle Scholar
  6. 6.
    Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson DM 3rd, Bohr VA. Protecting the mitochondrial powerhouse. Trends Cell Biol. 2015;25(3):158–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Marchi S, Pinton P. The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J Physiol. 2014;592(5):829–39.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell. 2012;149(7):1536–48.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Volgyi K, Juhasz G, Kovacs Z, Penke B. Dysfunction of endoplasmic reticulum (ER) and mitochondria (MT) in Alzheimer’s disease: the role of the ER-MT cross-talk. Curr Alzheimer Res. 2015;12(7):655–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Schapira AH, Olanow CW, Greenamyre JT, Bezard E. Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: future therapeutic perspectives. Lancet. 2014;384(9942):545–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Wu CC, Bratton SB. Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxid Redox Signal. 2013;19(6):546–58.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Busch KB, Kowald A, Spelbrink JN. Quality matters: how does mitochondrial network dynamics and quality control impact on mtDNA integrity? Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1646):20130442.CrossRefGoogle Scholar
  13. 13.
    Wang L, Ishihara T, Ibayashi Y, Tatsushima K, Setoyama D, Hanada Y, Takeichi Y, Sakamoto S, Yokota S, Mihara K, Kang D, Ishihara N, Takayanagi R, Nomura M. Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration. Diabetologia. 2015;58(10):2371–80.PubMedCrossRefGoogle Scholar
  14. 14.
    Hernandez-Alvarez MI, Paz JC, Sebastian D, Munoz JP, Liesa M, Segales J, Palacin M, Zorzano A. Glucocorticoid modulation of mitochondrial function in hepatoma cells requires the mitochondrial fission protein DRP1. Antioxid Redox Signal. 2013;19(4):366–78.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Roth D, Krammer PH, Gulow K. Dynamin related protein 1-dependent mitochondrial fission regulates oxidative signalling in T cells. FEBS Lett. 2014;588(9):1749–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Richter V, Palmer CS, Osellame LD, Singh AP, Elgass K, Stroud DA, Sesaki H, Kvansakul M, Ryan MT. Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission. J Cell Biol. 2014;204(4):477–86.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hatch AL, Gurel PS, Higgs HN. Novel roles for actin in mitochondrial fission. J Cell Sci. 2014;127(Pt 21):4549–60.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Korobova F, Gauvin TJ, Higgs HN. A role for myosin II in mammalian mitochondrial fission. Curr Biol. 2014;24(4):409–14.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Otera H, Ishihara N, Mihara K. New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta. 2013;1833(5):1256–68.PubMedCrossRefGoogle Scholar
  20. 20.
    Godoy JA, Arrazola MS, Ordenes D, Silva-Alvarez C, Braidy N, Inestrosa NC. Wnt-5a ligand modulates mitochondrial fission-fusion in rat hippocampal neurons. J Biol Chem. 2014;289(52):36179–93.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Liang N, Wang P, Wang S, Li S, Li Y, Wang J, Wang M. Role of mitochondrial calcium uniporter in regulating mitochondrial fission in the cerebral cortexes of living rats. J Neural Transm (Vienna). 2014;121(6):593–600.CrossRefGoogle Scholar
  22. 22.
    Pennanen C, Parra V, Lopez-Crisosto C, Morales PE, Del Campo A, Gutierrez T, Rivera-Mejias P, Kuzmicic J, Chiong M, Zorzano A, Rothermel BA, Lavandero S. Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway. J Cell Sci. 2014;127(Pt 12):2659–71.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Chen SD, Lin TK, Yang DI, Lee SY, Shaw FZ, Liou CW, Chuang YC. Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury. Biochem Biophys Res Commun. 2015;460(2):397–403.PubMedCrossRefGoogle Scholar
  24. 24.
    Buhlman L, Damiano M, Bertolin G, Ferrando-Miguel R, Lombes A, Brice A, Corti O. Functional interplay between Parkin and DRP1 in mitochondrial fission and clearance. Biochim Biophys Acta. 2014;1843(9):2012–26.PubMedCrossRefGoogle Scholar
  25. 25.
    Preau S, Delguste F, Yu Y, Remy-Jouet I, Richard V, Saulnier F, Boulanger E, Neviere R. Endotoxemia engages the RhoA kinase pathway to impair cardiac function by altering cytoskeleton, mitochondrial fission, and autophagy. Antioxid Redox Signal. 2016;24(10):529–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P, Chang BH, Schumacker PT, Danesh FR. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 2012;15(2):186–200.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Prieto J, Leon M, Ponsoda X, Sendra R, Bort R, Ferrer-Lorente R, Raya A, Lopez-Garcia C, Torres J. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat Commun. 2016;7:11124.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kim B, Park J, Chang KT, Lee DS. Peroxiredoxin 5 prevents amyloid-beta oligomer-induced neuronal cell death by inhibiting ERK-DRP1-mediated mitochondrial fragmentation. Free Radic Biol Med. 2016;90:184–94.PubMedCrossRefGoogle Scholar
  29. 29.
    Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-related GTPase DRP1 participates in mitochondrial fission. J Biol Chem. 2007;282(15):11521–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Jahani-Asl A, Huang E, Irrcher I, Rashidian J, Ishihara N, Lagace DC, Slack RS, Park DS. CDK5 phosphorylates DRP1 and drives mitochondrial defects in NMDA-induced neuronal death. Hum Mol Genet. 2015;24(16):4573–83.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Nakamura N, Kimura Y, Tokuda M, Honda S, Hirose S. MARCH-V is a novel mitofusin 2- and DRP1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006;7(10):1019–22.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Yonashiro R, Ishido S, Kyo S, Fukuda T, Goto E, Matsuki Y, Ohmura-Hoshino M, Sada K, Hotta H, Yamamura H, Inatome R, Yanagi S. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006;25(15):3618–26.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Xu S, Cherok E, Das S, Li S, Roelofs BA, Ge SX, Polster BM, Boyman L, Lederer WJ, Wang C, Karbowski M. Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol Biol Cell. 2016;27(2):349–59.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA. S-nitrosylation of DRP1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science. 2009;324(5923):102–5.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Braschi E, Zunino R, Mcbride HM. MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep. 2009;10(7):748–54.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Zunino R, Schauss A, Rippstein P, Andrade-Navarro M, Mcbride HM. The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J Cell Sci. 2007;120(Pt 7):1178–88.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Gawlowski T, Suarez J, Scott B, Torres-Gonzalez M, Wang H, Schwappacher R, Han X, Yates JR 3rd, Hoshijima M, Dillmann W. Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-beta-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes. J Biol Chem. 2012;287(35):30024–34.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Yim N, Ryu SW, Han EC, Yoon J, Choi K, Choi C. Mutant ubiquitin UBB+1 induces mitochondrial fusion by destabilizing mitochondrial fission-specific proteins and confers resistance to oxidative stress-induced cell death in astrocytic cells. PLoS One. 2014;9(6):e99937.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kasahara A, Cipolat S, Chen Y, Dorn GW 2nd, Scorrano L. Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science. 2013;342(6159):734–7.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ballweg K, Mutze K, Konigshoff M, Eickelberg O, Meiners S. Cigarette smoke extract affects mitochondrial function in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2014;307(11):L895–907.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hoppins S, Nunnari J. The molecular mechanism of mitochondrial fusion. Biochim Biophys Acta. 2009;1793(1):20–6.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem. 2003;278(10):7743–6.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Lower B, Wunderlich FT, Von Kleist-Retzow JC, Waisman A, Westermann B, Langer T. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 2008;22(4):476–88.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ranieri M, Brajkovic S, Riboldi G, Ronchi D, Rizzo F, Bresolin N, Corti S, Comi GP. Mitochondrial fusion proteins and human diseases. Neurol Res Int. 2013;2013:293893.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Duarte A, Castillo AF, Podesta EJ, Poderoso C. Mitochondrial fusion and ERK activity regulate steroidogenic acute regulatory protein localization in mitochondria. PLoS One. 2014;9(6):e100387.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hickey FB, Corcoran JB, Griffin B, Bhreathnach U, Mortiboys H, Reid HM, Andrews D, Byrne S, Furlong F, Martin F, Godson C, Murphy M. IHG-1 increases mitochondrial fusion and bioenergetic function. Diabetes. 2014;63(12):4314–25.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Silvander JSG, Kvarnstrom SM, Kumari-Ilieva A, Shrestha A, Alam CM, Toivola DM. Keratins regulate beta-cell mitochondrial morphology, motility, and homeostasis. FASEB J. 2017;31:4578.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Martorell-Riera A, Segarra-Mondejar M, Munoz JP, Ginet V, Olloquequi J, Perez-Clausell J, Palacin M, Reina M, Puyal J, Zorzano A, Soriano FX. MFN2 downregulation in excitotoxicity causes mitochondrial dysfunction and delayed neuronal death. EMBO J. 2014;33(20):2388–407.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lee JY, Kapur M, Li M, Choi MC, Choi S, Kim HJ, Kim I, Lee E, Taylor JP, Yao TP. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria. J Cell Sci. 2014;127(Pt 22):4954–63.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Glauser L, Sonnay S, Stafa K, Moore DJ. Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J Neurochem. 2011;118(4):636–45.PubMedCrossRefGoogle Scholar
  51. 51.
    Yue W, Chen Z, Liu H, Yan C, Chen M, Feng D, Yan C, Wu H, Du L, Wang Y, Liu J, Huang X, Xia L, Liu L, Wang X, Jin H, Wang J, Song Z, Hao X, Chen Q. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Cell Res. 2014;24(4):482–96.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Parra V, Verdejo HE, Iglewski M, Del Campo A, Troncoso R, Jones D, Zhu Y, Kuzmicic J, Pennanen C, Lopez-Crisosto C, Jana F, Ferreira J, Noguera E, Chiong M, Bernlohr DA, Klip A, Hill JA, Rothermel BA, Abel ED, Zorzano A, Lavandero S. Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFkappaB-Opa-1 signaling pathway. Diabetes. 2014;63(1):75–88.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang L, He Z, Zhang Q, Wu Y, Yang X, Niu W, Hu Y, Jia J. Exercise pretreatment promotes mitochondrial dynamic protein OPA1 expression after cerebral ischemia in rats. Int J Mol Sci. 2014;15(3):4453–63.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Song Z, Chen H, Fiket M, Alexander C, Chan DC. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol. 2007;178(5):749–55.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Griparic L, Kanazawa T, Van Der Bliek AM. Regulation of the mitochondrial dynamin-like protein OPA1 by proteolytic cleavage. J Cell Biol. 2007;178(5):757–64.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Quiros PM, Ramsay AJ, Sala D, Fernandez-Vizarra E, Rodriguez F, Peinado JR, Fernandez-Garcia MS, Vega JA, Enriquez JA, Zorzano A, Lopez-Otin C. Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. EMBO J. 2012;31(9):2117–33.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, Langer T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol. 2014;204(6):919–29.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Sin J, Andres AM, Taylor DJ, Weston T, Hiraumi Y, Stotland A, Kim BJ, Huang C, Doran KS, Gottlieb RA. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy. 2016;12(2):369–80.PubMedCrossRefGoogle Scholar
  59. 59.
    Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC, Hart J, Dorn GW 2nd, Brady MJ, Macleod KF. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol. 2012;32(13):2570–84.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Soleimanpour SA, Gupta A, Bakay M, Ferrari AM, Groff DN, Fadista J, Spruce LA, Kushner JA, Groop L, Seeholzer SH, Kaufman BA, Hakonarson H, Stoffers DA. The diabetes susceptibility gene Clec16a regulates mitophagy. Cell. 2014;157(7):1577–90.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Tan T, Zimmermann M, Reichert AS. Controlling quality and amount of mitochondria by mitophagy: insights into the role of ubiquitination and deubiquitination. Biol Chem. 2016;397(7):637–47.PubMedCrossRefGoogle Scholar
  62. 62.
    Yamaguchi O, Murakawa T, Nishida K, Otsu K. Receptor-mediated mitophagy. J Mol Cell Cardiol. 2016;95:50–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Hamacher-Brady A, Brady NR. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci. 2016;73(4):775–95.PubMedCrossRefGoogle Scholar
  64. 64.
    Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta. 2011;1813(7):1269–78.PubMedCrossRefGoogle Scholar
  65. 65.
    Wenz T. Regulation of mitochondrial biogenesis and PGC-1alpha under cellular stress. Mitochondrion. 2013;13(2):134–42.PubMedCrossRefGoogle Scholar
  66. 66.
    Fernandez-Vizarra E, Enriquez JA, Perez-Martos A, Montoya J, Fernandez-Silva P. Mitochondrial gene expression is regulated at multiple levels and differentially in the heart and liver by thyroid hormones. Curr Genet. 2008;54(1):13–22.PubMedCrossRefGoogle Scholar
  67. 67.
    Chen JQ, Cammarata PR, Baines CP, Yager JD. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim Biophys Acta. 2009;1793(10):1540–70.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 2012;148(3):421–33.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Le Pennec S, Mirebeau-Prunier D, Boutet-Bouzamondo N, Jacques C, Guillotin D, Lauret E, Houlgatte R, Malthiery Y, Savagner F. Nitric oxide and calcium participate in the fine regulation of mitochondrial biogenesis in follicular thyroid carcinoma cells. J Biol Chem. 2011;286(20):18229–39.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Santandreu FM, Oliver J, Roca P. Improvement of mitochondrial energy and oxidative balance during intestinal differentiation. Mitochondrion. 2011;11(1):89–96.PubMedCrossRefGoogle Scholar
  71. 71.
    Rogers RP, Rogina B. Increased mitochondrial biogenesis preserves intestinal stem cell homeostasis and contributes to longevity in Indy mutant flies. Aging (Albany NY). 2014;6(4):335–50.CrossRefGoogle Scholar
  72. 72.
    D’Errico I, Salvatore L, Murzilli S, Lo Sasso G, Latorre D, Martelli N, Egorova AV, Polishuck R, Madeyski-Bengtson K, Lelliott C, Vidal-Puig AJ, Seibel P, Villani G, Moschetta A. Peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1alpha) is a metabolic regulator of intestinal epithelial cell fate. Proc Natl Acad Sci U S A. 2011;108(16):6603–8.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Llimona F, De Lima TM, Moretti AI, Theobaldo M, Jukemura J, Velasco IT, Machado MC, Souza HP. PGC-1alpha expression is increased in leukocytes in experimental acute pancreatitis. Inflammation. 2014;37(4):1231–9.PubMedGoogle Scholar
  74. 74.
    Mills EL, Kelly B, O’Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol. 2017;18(5):488–98.PubMedCrossRefGoogle Scholar
  75. 75.
    Yang CS, Kim JJ, Lee HM, Jin HS, Lee SH, Park JH, Kim SJ, Kim JM, Han YM, Lee MS, Kweon GR, Shong M, Jo EK. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy. Autophagy. 2014;10(5):785–802.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Xing W, Yang L, Peng Y, Wang Q, Gao M, Yang M, Xiao X. Ginsenoside Rg3 attenuates sepsis-induced injury and mitochondrial dysfunction in liver via AMPK-mediated autophagy flux. Biosci Rep. 2017;37(4):BSR20170934.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Parikh SM, Yang Y, He L, Tang C, Zhan M, Dong Z. Mitochondrial function and disturbances in the septic kidney. Semin Nephrol. 2015;35(1):108–19.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Alvarez S, Vico T, Vanasco V. Cardiac dysfunction, mitochondrial architecture, energy production, and inflammatory pathways: interrelated aspects in endotoxemia and sepsis. Int J Biochem Cell Biol. 2016;81(Pt B):307–14.PubMedCrossRefGoogle Scholar
  79. 79.
    Suliman HB, Kraft BD, Bartz RR, Chen L, Welty-Wolf KE, Piantadosi CA. Mitochondrial quality control in alveolar epithelial cells damaged by S. aureus pneumonia in mice. Am J Physiol Lung Cell Mol Physiol. 2017;31:L699.CrossRefGoogle Scholar
  80. 80.
    Wu H, Wei H, Sehgal SA, Liu L, Chen Q. Mitophagy receptors sense stress signals and couple mitochondrial dynamic machinery for mitochondrial quality control. Free Radic Biol Med. 2016;100:199–209.PubMedCrossRefGoogle Scholar
  81. 81.
    Valero T. Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Des. 2014;20(35):5507–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Rub C, Wilkening A, Voos W. Mitochondrial quality control by the Pink1/Parkin system. Cell Tissue Res. 2017;367(1):111–23.PubMedCrossRefGoogle Scholar
  83. 83.
    Bondi H, Zilocchi M, Mare MG, D’Agostino G, Giovannardi S, Ambrosio S, Fasano M, Alberio T. Dopamine induces mitochondrial depolarization without activating PINK1-mediated mitophagy. J Neurochem. 2016;136:1219.PubMedCrossRefGoogle Scholar
  84. 84.
    Rojas-Charry L, Cookson MR, Nino A, Arboleda H, Arboleda G. Downregulation of Pink1 influences mitochondrial fusion-fission machinery and sensitizes to neurotoxins in dopaminergic cells. Neurotoxicology. 2014;44:140–8.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Sheng B, Wang X, Su B, Lee HG, Casadesus G, Perry G, Zhu X. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem. 2012;120(3):419–29.PubMedCrossRefGoogle Scholar
  86. 86.
    Baltrusch S. Mitochondrial network regulation and its potential interference with inflammatory signals in pancreatic beta cells. Diabetologia. 2016;59(4):683–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Joseph AM, Joanisse DR, Baillot RG, Hood DA. Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp Diabetes Res. 2012;2012:642038.PubMedCrossRefGoogle Scholar
  88. 88.
    Mcgill JK, Beal MF. PGC-1alpha, a new therapeutic target in Huntington’s disease? Cell. 2006;127(3):465–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Chen TT, Wu LS, Hsu PW, Pang CY, Lee KM, Cheng PC, Peng SY. Mitochondrial dynamics in the mouse liver infected by Schistosoma mansoni. Acta Trop. 2015;148:13–23.PubMedCrossRefGoogle Scholar
  90. 90.
    Yu T, Wang L, Lee H, O’Brien DK, Bronk SF, Gores GJ, Yoon Y. Decreasing mitochondrial fission prevents cholestatic liver injury. J Biol Chem. 2014;289(49):34074–88.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Zhang X, Shan P, Homer R, Zhang Y, Petrache I, Mannam P, Lee PJ. Cathepsin E promotes pulmonary emphysema via mitochondrial fission. Am J Pathol. 2014;184(10):2730–41.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Lu J, Shen Y, Liu LJ, Qian HY, Zhu CL. Combining epinephrine and esmolol attenuates excessive autophagy and mitophagy in rat cardiomyocytes after cardiac arrest. J Cardiovasc Pharmacol. 2015;66(5):449–56.PubMedCrossRefGoogle Scholar
  93. 93.
    Chen Y, Liu Y, Dorn GW 2nd. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res. 2011;109(12):1327–31.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Papanicolaou KN, Kikuchi R, Ngoh GA, Coughlan KA, Dominguez I, Stanley WC, Walsh K. Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart. Circ Res. 2012;111(8):1012–26.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Joshi SR, Dhagia V, Gairhe S, Edwards JG, Mcmurtry IF, Gupte SA. MicroRNA-140 is elevated and mitofusin-1 is downregulated in the right ventricle of the Sugen5416/hypoxia/normoxia model of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2016;311(3):H689–98.PubMedCrossRefGoogle Scholar
  96. 96.
    Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014;5(1):66–72.PubMedCrossRefGoogle Scholar
  97. 97.
    Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360(9328):219–23.PubMedCrossRefGoogle Scholar
  98. 98.
    Carre JE, Orban JC, Re L, Felsmann K, Iffert W, Bauer M, Suliman HB, Piantadosi CA, Mayhew TM, Breen P, Stotz M, Singer M. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med. 2010;182(6):745–51.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Karlsson M, Hara N, Morata S, Sjovall F, Kilbaugh T, Hansson MJ, Uchino H, Elmer E. Diverse and tissue-specific mitochondrial respiratory response in a mouse model of sepsis-induced multiple organ failure. Shock. 2016;45(4):404–10.PubMedCrossRefGoogle Scholar
  100. 100.
    Neviere R, Delguste F, Durand A, Inamo J, Boulanger E, Preau S. Abnormal mitochondrial cAMP/PKA signaling is involved in sepsis-induced mitochondrial and myocardial dysfunction. Int J Mol Sci. 2016;17(12):E2075.PubMedCrossRefGoogle Scholar
  101. 101.
    Jeger V, Brandt S, Porta F, Jakob SM, Takala J, Djafarzadeh S. Dose response of endotoxin on hepatocyte and muscle mitochondrial respiration in vitro. Biomed Res Int. 2015;2015:353074.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Herminghaus A, Barthel F, Heinen A, Beck C, Vollmer C, Bauer I, Weidinger A, Kozlov AV, Picker O. Severity of polymicrobial sepsis modulates mitochondrial function in rat liver. Mitochondrion. 2015;24:122–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Joseph LC, Kokkinaki D, Valenti MC, Kim GJ, Barca E, Tomar D, Hoffman NE, Subramanyam P, Colecraft HM, Hirano M, Ratner AJ, Madesh M, Drosatos K, Morrow JP. Inhibition of NADPH oxidase 2 (NOX2) prevents sepsis-induced cardiomyopathy by improving calcium handling and mitochondrial function. JCI Insight. 2017;2(17):94248.PubMedCrossRefGoogle Scholar
  104. 104.
    Stoyanoff TR, Todaro JS, Aguirre MV, Zimmermann MC, Brandan NC. Amelioration of lipopolysaccharide-induced acute kidney injury by erythropoietin: involvement of mitochondria-regulated apoptosis. Toxicology. 2014;318:13–21.PubMedCrossRefGoogle Scholar
  105. 105.
    Yi L, Huang X, Guo F, Zhou Z, Chang M, Tang J, Huan J. Lipopolysaccharide induces human pulmonary micro-vascular endothelial apoptosis via the YAP signaling pathway. Front Cell Infect Microbiol. 2016;6:133.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Kautza B, Gomez H, Escobar D, Corey C, Ataya B, Luciano J, Botero AM, Gordon L, Brumfield J, Martinez S, Holder A, Ogundele O, Pinsky M, Shiva S, Zuckerbraun BS. Inhaled, nebulized sodium nitrite protects in murine and porcine experimental models of hemorrhagic shock and resuscitation by limiting mitochondrial injury. Nitric Oxide. 2015;51:7–18.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Ding M, Ning J, Feng N, Li Z, Liu Z, Wang Y, Wang Y, Li X, Huo C, Jia X, Xu R, Fu F, Wang X, Pei J. Dynamin-related protein 1-mediated mitochondrial fission contributes to post-traumatic cardiac dysfunction in rats and the protective effect of melatonin. J Pineal Res. 2017;64:e12447.CrossRefGoogle Scholar
  108. 108.
    Gonzalez AS, Elguero ME, Finocchietto P, Holod S, Romorini L, Miriuka SG, Peralta JG, Poderoso JJ, Carreras MC. Abnormal mitochondrial fusion-fission balance contributes to the progression of experimental sepsis. Free Radic Res. 2014;48(7):769–83.PubMedCrossRefGoogle Scholar
  109. 109.
    Sehat A, Huebinger RM, Carlson DL, Zang QS, Wolf SE, Song J. Burn serum stimulates myoblast cell death associated with IL-6-induced mitochondrial fragmentation. Shock. 2017;48(2):236–42.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Jesinkey SR, Funk JA, Stallons LJ, Wills LP, Megyesi JK, Beeson CC, Schnellmann RG. Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury. J Am Soc Nephrol. 2014;25(6):1157–62.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Mannam P, Shinn AS, Srivastava A, Neamu RF, Walker WE, Bohanon M, Merkel J, Kang MJ, Dela Cruz CS, Ahasic AM, Pisani MA, Trentalange M, West AP, Shadel GS, Elias JA, Lee PJ. MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2014;306(7):L604–19.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Smith JA, Stallons LJ, Collier JB, Chavin KD, Schnellmann RG. Suppression of mitochondrial biogenesis through toll-like receptor 4-dependent mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling in endotoxin-induced acute kidney injury. J Pharmacol Exp Ther. 2015;352(2):346–57.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Piquereau J, Godin R, Deschenes S, Bessi VL, Mofarrahi M, Hussain SN, Burelle Y. Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy. 2013;9(11):1837–51.PubMedCrossRefGoogle Scholar
  114. 114.
    Go KL, Lee S, Zendejas I, Behrns KE, Kim JS. Mitochondrial dysfunction and autophagy in hepatic ischemia/reperfusion injury. Biomed Res Int. 2015;2015:183469.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Wang K. Autophagy and apoptosis in liver injury. Cell Cycle. 2015;14(11):1631–42.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Swiader A, Nahapetyan H, Faccini J, D’Angelo R, Mucher E, Elbaz M, Boya P, Vindis C. Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids. Oncotarget. 2016;7(20):28821–35.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Liang X, Wei SQ, Lee SJ, Fung JK, Zhang M, Tanaka A, Choi AM, Jin Y. p62 sequestosome 1/light chain 3b complex confers cytoprotection on lung epithelial cells after hyperoxia. Am J Respir Cell Mol Biol. 2013;48(4):489–96.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Gao L, Jiang T, Guo J, Liu Y, Cui G, Gu L, Su L, Zhang Y. Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One. 2012;7(9):e46092.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Yang JY, Yang WY. Bit-by-bit autophagic removal of parkin-labelled mitochondria. Nat Commun. 2013;4:2428.PubMedCrossRefGoogle Scholar
  120. 120.
    Huang P, Galloway CA, Yoon Y. Control of mitochondrial morphology through differential interactions of mitochondrial fusion and fission proteins. PLoS One. 2011;6(5):e20655.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Song M, Gong G, Burelle Y, Gustafsson AB, Kitsis RN, Matkovich SJ, Dorn GW 2nd. Interdependence of Parkin-mediated mitophagy and mitochondrial fission in adult mouse hearts. Circ Res. 2015;117(4):346–51.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Chen Y, Dorn GW 2nd. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 2013;340(6131):471–5.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Song M, Mihara K, Chen Y, Scorrano L, Dorn GW 2nd. Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab. 2015;21(2):273–85.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Zhang B, Xu L, Zhuo N, Shen J. Resveratrol protects against mitochondrial dysfunction through autophagy activation in human nucleus pulposus cells. Biochem Biophys Res Commun. 2017;493(1):373–81.PubMedCrossRefGoogle Scholar
  125. 125.
    Muthulakshmi S, Saravanan R. Protective effects of azelaic acid against high-fat diet-induced oxidative stress in liver, kidney and heart of C57BL/6J mice. Mol Cell Biochem. 2013;377(1-2):23–33.PubMedCrossRefGoogle Scholar
  126. 126.
    Dietl A, Maack C. Targeting mitochondrial calcium handling and reactive oxygen species in heart failure. Curr Heart Fail Rep. 2017;14(4):338–49.PubMedCrossRefGoogle Scholar
  127. 127.
    Formentini L, Santacatterina F, Nunez De Arenas C, Stamatakis K, Lopez-Martinez D, Logan A, Fresno M, Smits R, Murphy MP, Cuezva JM. Mitochondrial ROS production protects the intestine from inflammation through functional M2 macrophage polarization. Cell Rep. 2017;19(6):1202–13.PubMedCrossRefGoogle Scholar
  128. 128.
    Prauchner CA. Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy. Burns. 2017;43(3):471–85.PubMedCrossRefGoogle Scholar
  129. 129.
    Reddy PH, Manczak M, Kandimalla R. Mitochondria-targeted small molecule SS31: a potential candidate for the treatment of Alzheimer’s disease. Hum Mol Genet. 2017;26(8):1483–96.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Yin X, Manczak M, Reddy PH. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington’s disease. Hum Mol Genet. 2016;25(9):1739–53.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Zhao WY, Han S, Zhang L, Zhu YH, Wang LM, Zeng L. Mitochondria-targeted antioxidant peptide SS31 prevents hypoxia/reoxygenation-induced apoptosis by down-regulating p66Shc in renal tubular epithelial cells. Cell Physiol Biochem. 2013;32(3):591–600.PubMedCrossRefGoogle Scholar
  132. 132.
    Mailloux RJ. Application of mitochondria-targeted pharmaceuticals for the treatment of heart disease. Curr Pharm Des. 2016;22(31):4763–79.PubMedCrossRefGoogle Scholar
  133. 133.
    Martin L, Peters C, Heinbockel L, Moellmann J, Martincuks A, Brandenburg K, Lehrke M, Muller-Newen G, Marx G, Schuerholz T. The synthetic antimicrobial peptide 19-2.5 attenuates mitochondrial dysfunction in cardiomyocytes stimulated with human sepsis serum. Innate Immun. 2016;22(8):612–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Disatnik MH, Ferreira JC, Campos JC, Gomes KS, Dourado PM, Qi X, Mochly-Rosen D. Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. J Am Heart Assoc. 2013;2(5):e000461.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Xie N, Wang C, Lian Y, Wu C, Zhang H, Zhang Q. Inhibition of mitochondrial fission attenuates Abeta-induced microglia apoptosis. Neuroscience. 2014;256:36–42.PubMedCrossRefGoogle Scholar
  136. 136.
    Wu Q, Xia SX, Li QQ, Gao Y, Shen X, Ma L, Zhang MY, Wang T, Li YS, Wang ZF, Luo CL, Tao LY. Mitochondrial division inhibitor 1 (Mdivi-1) offers neuroprotection through diminishing cell death and improving functional outcome in a mouse model of traumatic brain injury. Brain Res. 2016;1630:134–43.PubMedCrossRefGoogle Scholar
  137. 137.
    Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 2010;121(18):2012–22.PubMedCrossRefGoogle Scholar
  138. 138.
    Dillon LM, Hida A, Garcia S, Prolla TA, Moraes CT. Long-term bezafibrate treatment improves skin and spleen phenotypes of the mtDNA mutator mouse. PLoS One. 2012;7(9):e44335.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Dillon LM, Williams SL, Hida A, Peacock JD, Prolla TA, Lincoln J, Moraes CT. Increased mitochondrial biogenesis in muscle improves aging phenotypes in the mtDNA mutator mouse. Hum Mol Genet. 2012;21(10):2288–97.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Mudo G, Makela J, Di Liberto V, Tselykh TV, Olivieri M, Piepponen P, Eriksson O, Malkia A, Bonomo A, Kairisalo M, Aguirre JA, Korhonen L, Belluardo N, Lindholm D. Transgenic expression and activation of PGC-1alpha protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cell Mol Life Sci. 2012;69(7):1153–65.PubMedCrossRefGoogle Scholar
  141. 141.
    Mccreath G, Scullion MM, Lowes DA, Webster NR, Galley HF. Pharmacological activation of endogenous protective pathways against oxidative stress under conditions of sepsis. Br J Anaesth. 2016;116(1):131–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Rozova EV, Mankovskaya IN, Mironova GD. Structural and dynamic changes in mitochondria of rat myocardium under acute hypoxic hypoxia: role of mitochondrial ATP-dependent potassium channel. Biochemistry (Mosc). 2015;80(8):994–1000.CrossRefGoogle Scholar
  143. 143.
    Sanderson TH, Raghunayakula S, Kumar R. Neuronal hypoxia disrupts mitochondrial fusion. Neuroscience. 2015;301:71–8.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Anusree SS, Nisha VM, Priyanka A, Raghu KG. Insulin resistance by TNF-alpha is associated with mitochondrial dysfunction in 3T3-L1 adipocytes and is ameliorated by punicic acid, a PPARgamma agonist. Mol Cell Endocrinol. 2015;413:120–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Wang DB, Kinoshita C, Kinoshita Y, Morrison RS. p53 and mitochondrial function in neurons. Biochim Biophys Acta. 2014;1842(8):1186–97.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Kang JW, Hong JM, Lee SM. Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis. J Pineal Res. 2016;60(4):383–93.PubMedCrossRefGoogle Scholar
  147. 147.
    Hull TD, Boddu R, Guo L, Tisher CC, Traylor AM, Patel B, Joseph R, Prabhu SD, Suliman HB, Piantadosi CA, Agarwal A, George JF. Heme oxygenase-1 regulates mitochondrial quality control in the heart. JCI Insight. 2016;1(2):e85817.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Zhang Q, Tamura Y, Roy M, Adachi Y, Iijima M, Sesaki H. Biosynthesis and roles of phospholipids in mitochondrial fusion, division and mitophagy. Cell Mol Life Sci. 2014;71(19):3767–78.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Wu W, Lin C, Wu K, Jiang L, Wang X, Li W, Zhuang H, Zhang X, Chen H, Li S, Yang Y, Lu Y, Wang J, Zhu R, Zhang L, Sui S, Tan N, Zhao B, Zhang J, Li L, Feng D. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J. 2016;35(13):1368–84.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Lei Kuang
    • 1
  • Liangming Liu
    • 1
  • Tao Li
    • 1
  1. 1.State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital and Research Institute of SurgeryThird Military Medical UniversityChongqingP. R. China

Personalised recommendations