Advertisement

Perioperative Intestinal Injury: Etiology, Mechanism, and Prevention

  • Xiao-Dong Chen
  • Ke-Xuan Liu
Chapter

Abstract

Perioperative organ injury is a severe and commonly encountered problem in surgical practice and has been drawing great attention from physicians and researchers. Under the philosophy of precision medicine and fast-track surgery, anesthesiologists have direct influence on patients’ long-term outcomes by protecting important organs during perioperative period. This will reflect the evolvement of anesthesiology to perioperative medicine. There had been widespread concern over the mechanism and prevention of perioperative heart, brain, lung, and kidney injuries. Whereas the intestine is a luminal organ, research interests were often put to its digestive, absorbing, and excretory functions. In fact, intestines have much more functions than that mentioned above; intestine barrier has complex components, which can be easily affected by internal or external factors such as ischemia, hypoxia, infection, stress, or prolonged administration of antibiotics or immunosuppressants. Among these factors, intestinal ischemia is the most common cause of perioperative intestinal injury; this process not only occurs during the hypoperfusion stage but more importantly after blood supply was restored, namely, ischemia/reperfusion injury. The further intestinal injury caused by reperfusion and the consequent extraintestinal organ injuries were called second hit. The impaired intestinal mucosal barrier and subsequent translocation of intestinal bacteria and endotoxin can result in systemic inflammatory reaction syndrome. Here, we review the progress in the study of the mechanism, prevention, and treatment of perioperative intestinal injury (especially intestinal I/R injury), hoping to provide some useful information for clinical practice.

References

  1. 1.
    Zhao L, Luo L, Chen J, Xiao J, Jia W, Xiao Y. Utilization of extracorporeal membrane oxygenation alleviates intestinal ischemia-reperfusion injury in prolonged hemorrhagic shock animal model. Cell Biochem Biophys. 2014;70(3):1733–40.  https://doi.org/10.1007/s12013-014-0121-3.CrossRefPubMedGoogle Scholar
  2. 2.
    Slone EA, Fleming SD. Membrane lipid interactions in intestinal ischemia/reperfusion-induced injury. Clin Immunol. 2014;153(1):228–40.  https://doi.org/10.1016/j.clim.2014.04.018.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Oldenburg W, Lau L, Rodenberg T, Edmonds H, Burger C. Acute mesenteric ischemia: a clinical review. Arch Intern Med. 2004;164(10):1054–62.CrossRefGoogle Scholar
  4. 4.
    Smit M, Buddingh KT, Bosma B, Nieuwenhuijs VB, Hofker HS, Zijlstra JG. Abdominal compartment syndrome and intra-abdominal ischemia in patients with severe acute pancreatitis. World J Surg. 2016;40(6):1454–61.  https://doi.org/10.1007/s00268-015-3388-7.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tian R, Tan JT, Wang RL, Xie H, Qian YB, Yu KL. The role of intestinal mucosa oxidative stress in gut barrier dysfunction of severe acute pancreatitis. Eur Rev Med Pharmacol Sci. 2013;17(3):349–55.PubMedGoogle Scholar
  6. 6.
    Yang R, Tenhunen J, Tonnessen TI. HMGB1 and histones play a significant role in inducing systemic inflammation and multiple organ dysfunctions in severe acute pancreatitis. Int J Inflamm. 2017;2017:1817564.  https://doi.org/10.1155/2017/1817564.CrossRefGoogle Scholar
  7. 7.
    De Silva RJ, Bhinda P, Goddard M, Choong CK. The value of post mortems in cardiac surgery: learning from the dead. Heart Lung Circ. 2012;21(3):150–3.  https://doi.org/10.1016/j.hlc.2011.11.005.CrossRefPubMedGoogle Scholar
  8. 8.
    Adamik B, Kubler A, Gozdzik A, Gozdzik W. Prolonged cardiopulmonary bypass is a risk factor for intestinal ischaemic damage and endotoxaemia. Heart Lung Circ. 2017;26(7):717–23.  https://doi.org/10.1016/j.hlc.2016.10.012.CrossRefPubMedGoogle Scholar
  9. 9.
    Ultee KH, Zettervall SL, Soden PA, Darling J, Bertges DJ, Verhagen HJ, Schermerhorn ML. Incidence of and risk factors for bowel ischemia after abdominal aortic aneurysm repair. J Vasc Surg. 2016;64(5):1384–91.  https://doi.org/10.1016/j.jvs.2016.05.045.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Li BC, Xia ZQ, Li C, Liu WF, Wen SH, Liu KX. The incidence and risk factors of gastrointestinal complications after hepatectomy: a retrospective observational study of 1329 consecutive patients in a single center. J Surg Res. 2014;192(2):440–6.  https://doi.org/10.1016/j.jss.2014.06.015.CrossRefPubMedGoogle Scholar
  11. 11.
    Nastos C, Kalimeris K, Papoutsidakis N, Tasoulis MK, Lykoudis PM, Theodoraki K, et al. Global consequences of liver ischemia/reperfusion injury. Oxidative Med Cell Longev. 2014;2014:906965.  https://doi.org/10.1155/2014/906965.CrossRefGoogle Scholar
  12. 12.
    Lenaerts K, Ceulemans LJ, Hundscheid IH, Grootjans J, Dejong CH, Olde Damink SW. New insights in intestinal ischemia-reperfusion injury: implications for intestinal transplantation. Curr Opin Organ Transplant. 2013;18(3):298–303.  https://doi.org/10.1097/MOT.0b013e32835ef1eb.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang HY, Wang F, Feng JX. Intestinal microcirculatory dysfunction and neonatal necrotizing enterocolitis. Chin Med J. 2013;126(9):1771–8.PubMedGoogle Scholar
  14. 14.
    Neu J. Necrotizing enterocolitis. World Rev Nutr Diet. 2014;110:253–63.  https://doi.org/10.1159/000358474.CrossRefPubMedGoogle Scholar
  15. 15.
    Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94(2):329–54.  https://doi.org/10.1152/physrev.00040.2012.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mallick IH, Yang W, Winslet MC, Seifalian AM. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci. 2004;49(9):1359–77.CrossRefGoogle Scholar
  17. 17.
    Wen S, Ling Y, Yang W, Shen J, Li C, Deng W, et al. Necroptosis is a key mediator of enterocytes loss in intestinal ischaemia/reperfusion injury. J Cell Mol Med. 2017;21(3):432–43.  https://doi.org/10.1111/jcmm.12987.CrossRefPubMedGoogle Scholar
  18. 18.
    Wen SH, Li Y, Li C, Xia ZQ, Liu WF, Zhang XY, et al. Ischemic postconditioning during reperfusion attenuates intestinal injury and mucosal cell apoptosis by inhibiting JAK/STAT signaling activation. Shock. 2012;38(4):411–9.  https://doi.org/10.1097/SHK.0b013e3182662266.CrossRefPubMedGoogle Scholar
  19. 19.
    Li Y, Wen S, Yao X, Liu W, Shen J, Deng W, et al. MicroRNA-378 protects against intestinal ischemia/reperfusion injury via a mechanism involving the inhibition of intestinal mucosal cell apoptosis. Cell Death Dis. 2017;8(10):e3127.  https://doi.org/10.1038/cddis.2017.508.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chi X, Yao W, Xia H, Jin Y, Li X, Cai J, Hei Z. Elevation of HO-1 expression mitigates intestinal ischemia-reperfusion injury and restores tight junction function in a rat liver transplantation model. Oxidative Med Cell Longev. 2015;2015:986075.  https://doi.org/10.1155/2015/986075.CrossRefGoogle Scholar
  21. 21.
    Jin Y, Blikslager AT. Myosin light chain kinase mediates intestinal barrier dysfunction via occludin endocytosis during anoxia/reoxygenation injury. Am J Physiol Cell Physiol. 2016;311(6):C996–c1004.  https://doi.org/10.1152/ajpcell.00113.2016.CrossRefPubMedGoogle Scholar
  22. 22.
    Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, et al. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol. 2017;312(3):G171–g193.  https://doi.org/10.1152/ajpgi.00048.2015.CrossRefPubMedGoogle Scholar
  23. 23.
    Takizawa Y, Kishimoto H, Kitazato T, Tomita M, Hayashi M. Changes in protein and mRNA expression levels of claudin family after mucosal lesion by intestinal ischemia/reperfusion. Int J Pharm. 2012;426(1–2):82–9.  https://doi.org/10.1016/j.ijpharm.2012.01.023.CrossRefPubMedGoogle Scholar
  24. 24.
    Takizawa Y, Kishimoto H, Tomita M, Hayashi M. Changes in the expression levels of tight junction components during reconstruction of tight junction from mucosal lesion by intestinal ischemia/reperfusion. Eur J Drug Metab Pharmacokinet. 2014;39(3):211–20.  https://doi.org/10.1007/s13318-013-0151-z.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang XY, Liu ZM, Zhang HF, Li YS, Wen SH, Shen JT, Liu KX. Decreased PD-1/PD-L1 expression Is associated with the reduction in mucosal immunoglobulin A in mice with intestinal ischemia reperfusion. Dig Dis Sci. 2015;60(9):2662–9.  https://doi.org/10.1007/s10620-015-3684-y.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang XY, Liu ZM, Zhang HF, Li YS, Wen SH, Shen JT, et al. TGF-beta1 improves mucosal IgA dysfunction and dysbiosis following intestinal ischaemia-reperfusion in mice. J Cell Mol Med. 2016;20(6):1014–23.  https://doi.org/10.1111/jcmm.12789.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Diebel LN, Liberati DM, Dulchavsky SA, Diglio CA, Brown WJ. Enterocyte apoptosis and barrier function are modulated by SIgA after exposure to bacteria and hypoxia/reoxygenation. Surgery. 2003;134(4):574–80.  https://doi.org/10.1016/s0039. discussion 580-571.CrossRefPubMedGoogle Scholar
  28. 28.
    Lee H, Green DJ, Lai L, Hou YJ, Jensenius JC, Liu D, et al. Early complement factors in the local tissue immunocomplex generated during intestinal ischemia/reperfusion injury. Mol Immunol. 2010;47(5):972–81.  https://doi.org/10.1016/j.molimm.2009.11.022.CrossRefPubMedGoogle Scholar
  29. 29.
    Shi T, Moulton VR, Lapchak PH, Deng GM, Dalle Lucca JJ, Tsokos GC. Ischemia-mediated aggregation of the actin cytoskeleton is one of the major initial events resulting in ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2009;296(2):G339–47.  https://doi.org/10.1152/ajpgi.90607.2008.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang M, Alicot E, Carroll M. Human natural IgM can induce ischemia/reperfusion injury in a murine intestinal model. Mol Immunol. 2008;45(15):4036–9.CrossRefGoogle Scholar
  31. 31.
    Hu R, Chen ZF, Yan J, Li QF, Huang Y, Xu H, et al. Complement C5a exacerbates acute lung injury induced through autophagy-mediated alveolar macrophage apoptosis. Cell Death Dis. 2014;5:e1330.  https://doi.org/10.1038/cddis.2014.274.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tuboly E, Futakuchi M, Varga G, Erces D, Tokes T, Meszaros A, et al. C5a inhibitor protects against ischemia/reperfusion injury in rat small intestine. Microbiol Immunol. 2016;60(1):35–46.  https://doi.org/10.1111/1348-0421.12338.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen J, Crispin JC, Tedder TF, Dalle Lucca J, Tsokos GC. B cells contribute to ischemia/reperfusion-mediated tissue injury. J Autoimmun. 2009;32(3–4):195–200.  https://doi.org/10.1016/j.jaut.2009.02.021.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Grootjans J, Hodin CM, de Haan JJ, Derikx JP, Rouschop KM, Verheyen FK, et al. Level of activation of the unfolded protein response correlates with Paneth cell apoptosis in human small intestine exposed to ischemia/reperfusion. Gastroenterology. 2011;140(2):529–539.e523.  https://doi.org/10.1053/j.gastro.2010.10.040.CrossRefPubMedGoogle Scholar
  35. 35.
    Fukatsu K, Sakamoto S, Hara E, Ueno C, Maeshima Y, Matsumoto I, et al. Gut ischemia-reperfusion affects gut mucosal immunity: a possible mechanism for infectious complications after severe surgical insults. Crit Care Med. 2006;34(1):182–7.CrossRefGoogle Scholar
  36. 36.
    Watson MJ, Ke B, Shen XD, Gao F, Busuttil RW, Kupiec-Weglinski JW, Farmer DG. Treatment with antithymocyte globulin ameliorates intestinal ischemia and reperfusion injury in mice. Surgery. 2012;152(5):843–50.  https://doi.org/10.1016/j.surg.2012.03.001.CrossRefPubMedGoogle Scholar
  37. 37.
    Yang X, Bai H, Wang Y, Li J, Zhou Q, Cai W, et al. Deletion of regulatory T cells supports the development of intestinal ischemia-reperfusion injuries. J Surg Res. 2013;184(2):832–7.  https://doi.org/10.1016/j.jss.2013.05.014.CrossRefPubMedGoogle Scholar
  38. 38.
    Karhausen J, Qing M, Gibson A, Moeser AJ, Griefingholt H, Hale LP, et al. Intestinal mast cells mediate gut injury and systemic inflammation in a rat model of deep hypothermic circulatory arrest. Crit Care Med. 2013;41(9):e200–10.  https://doi.org/10.1097/CCM.0b013e31827cac7a.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chen Y, Lui VC, Rooijen NV, Tam PK. Depletion of intestinal resident macrophages prevents ischaemia reperfusion injury in gut. Gut. 2004;53(12):1772–80.  https://doi.org/10.1136/gut.2003.034868.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Liu WF, Wen SH, Zhan JH, Li YS, Shen JT, Yang WJ, et al. Treatment with recombinant trichinella spiralis cathepsin B-like protein ameliorates intestinal ischemia/reperfusion injury in mice by promoting a switch from M1 to M2 macrophages. J Immunol. 2015;195(1):317–28.  https://doi.org/10.4049/jimmunol.1401864.CrossRefPubMedGoogle Scholar
  41. 41.
    Towfigh S, Heisler T, Rigberg DA, Hines OJ, Chu J, McFadden DW, Chandler C. Intestinal ischemia and the gut-liver axis: an in vitro model. J Surg Res. 2000;88(2):160–4.  https://doi.org/10.1006/jsre.1999.5767.CrossRefPubMedGoogle Scholar
  42. 42.
    Salerno-Goncalves R, Safavie F, Fasano A, Sztein MB. Free and complexed-secretory immunoglobulin A triggers distinct intestinal epithelial cell responses. Clin Exp Immunol. 2016;185(3):338–47.  https://doi.org/10.1111/cei.12801.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hoehn RS, Seitz AP, Jernigan PL, Gulbins E, Edwards MJ. Ischemia/reperfusion injury alters sphingolipid metabolism in the gut. Cell Physiol Biochem. 2016;39(4):1262–70.  https://doi.org/10.1159/000447831.CrossRefPubMedGoogle Scholar
  44. 44.
    Liu KX, Chen SQ, Huang WQ, Li YS, Irwin MG, Xia Z. Propofol pretreatment reduces ceramide production and attenuates intestinal mucosal apoptosis induced by intestinal ischemia/reperfusion in rats. Anesth Analg. 2008;107(6):1884–91.  https://doi.org/10.1213/ane.0b013e3181884bbf.CrossRefPubMedGoogle Scholar
  45. 45.
    Liu KX, He W, Rinne T, Liu Y, Zhao MQ, Wu WK. The effect of ginkgo biloba extract (EGb 761) pretreatment on intestinal epithelial apoptosis induced by intestinal ischemia/reperfusion in rats: role of ceramide. Am J Chin Med. 2007;35(5):805–19.  https://doi.org/10.1142/s0192415x07005284.CrossRefPubMedGoogle Scholar
  46. 46.
    Wang F, Li Q, He Q, Geng Y, Tang C, Wang C, Li J. Temporal variations of the ileal microbiota in intestinal ischemia and reperfusion. Shock. 2013;39(1):96–103.  https://doi.org/10.1097/SHK.0b013e318279265f.CrossRefPubMedGoogle Scholar
  47. 47.
    Ozkan O, Ozkan O, Bektas G, Cinpolat A, Bassorgun I, Ciftcioglu A. The relationship between ischemia time and mucous secretion in vaginal reconstruction with the jejunal free flap: an experimental study on the rat jejunum. Ann Plast Surg. 2015;75(1):98–101.  https://doi.org/10.1097/01.SAP.0000466781.69925.b2.CrossRefPubMedGoogle Scholar
  48. 48.
    Castaneda A, Vilela R, Chang L, Mercer DW. Effects of intestinal ischemia/reperfusion injury on gastric acid secretion. J Surg Res. 2000;90(1):88–93.  https://doi.org/10.1006/jsre.2000.5853.CrossRefPubMedGoogle Scholar
  49. 49.
    Liu Z, Luo Y, Cheng Y, Zou D, Zeng A, Yang C, et al. Gastrin attenuates ischemia-reperfusion-induced intestinal injury in rats. Exp Biol Med (Maywood). 2016;241(8):873–81.  https://doi.org/10.1177/1535370216630179.CrossRefGoogle Scholar
  50. 50.
    Chang M, Alsaigh T, Kistler EB, Schmid-Schonbein GW. Breakdown of mucin as barrier to digestive enzymes in the ischemic rat small intestine. PLoS One. 2012;7(6):e40087.  https://doi.org/10.1371/journal.pone.0040087.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Fishman JE, Sheth SU, Levy G, Alli V, Lu Q, Xu D, et al. Intraluminal nonbacterial intestinal components control gut and lung injury after trauma hemorrhagic shock. Ann Surg. 2014;260(6):1112–20.  https://doi.org/10.1097/SLA.0000000000000631.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Qin X, Sheth SU, Sharpe SM, Dong W, Lu Q, Xu D, Deitch EA. The mucus layer is critical in protecting against ischemia-reperfusion-mediated gut injury and in the restitution of gut barrier function. Shock. 2011;35(3):275–81.  https://doi.org/10.1097/SHK.0b013e3181f6aaf1.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Grootjans J, Hundscheid IH, Lenaerts K, Boonen B, Renes IB, Verheyen FK, et al. Ischaemia-induced mucus barrier loss and bacterial penetration are rapidly counteracted by increased goblet cell secretory activity in human and rat colon. Gut. 2013;62(2):250–8.  https://doi.org/10.1136/gutjnl-2011-301956.CrossRefPubMedGoogle Scholar
  54. 54.
    Zhou J, Huang WQ, Li C, Wu GY, Li YS, Wen SH, et al. Intestinal ischemia/reperfusion enhances microglial activation and induces cerebral injury and memory dysfunction in rats. Crit Care Med. 2012;40(8):2438–48.  https://doi.org/10.1097/CCM.0b013e3182546855.CrossRefPubMedGoogle Scholar
  55. 55.
    Liu KX, Chen SQ, Zhang H, Guo JY, Li YS, Huang WQ. Intestinal ischaemia/reperfusion upregulates beta-defensin-2 expression and causes acute lung injury in the rat. Injury. 2009;40(9):950–5.  https://doi.org/10.1016/j.injury.2009.01.103.CrossRefPubMedGoogle Scholar
  56. 56.
    Lin ZL, Tan SJ, Cheng MH, Zhao CY, Yu WK, He YL, et al. Lipid-rich enteral nutrition controls intestinal inflammation, improves intestinal motility and mucosal barrier damage in a rat model of intestinal ischemia/reperfusion injury. J Surg Res. 2017;213:75–83.  https://doi.org/10.1016/j.jss.2017.02.007.CrossRefPubMedGoogle Scholar
  57. 57.
    Wu C, Wang X, Jiang T, Li C, Zhang L, Gao X, et al. Partial enteral nutrition mitigated ischemia/reperfusion-induced damage of rat small intestinal barrier. Nutrients. 2016;8(8):502.  https://doi.org/10.3390/nu8080502.CrossRefPubMedCentralGoogle Scholar
  58. 58.
    Shu X, Zhang J, Wang Q, Xu Z, Yu T. Glutamine decreases intestinal mucosal injury in a rat model of intestinal ischemia-reperfusion by downregulating HMGB1 and inflammatory cytokine expression. Exp Ther Med. 2016;12(3):1367–72.  https://doi.org/10.3892/etm.2016.3468.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Peng Z, Ban K, Wawrose RA, Gover AG, Kozar RA. Protection by enteral glutamine is mediated by intestinal epithelial cell peroxisome proliferator-activated receptor-gamma during intestinal ischemia/reperfusion. Shock. 2015;43(4):327–33.  https://doi.org/10.1097/shk.0000000000000297.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kim Y, Kim DC, Cho ES, Ko SO, Kwon WY, Suh GJ, Shin HK. Antioxidant and anti-inflammatory effects of selenium in oral buccal mucosa and small intestinal mucosa during intestinal ischemia-reperfusion injury. J Inflamm (Lond). 2014;11(1):36.  https://doi.org/10.1186/s12950-014-0036-1.CrossRefGoogle Scholar
  61. 61.
    Colak T, Ozturk C, Polat A, Bagdatoglu O, Kanik A, Turkmenoglu O, Aydin S. Effects of trapidil on intestinal mucosal barrier function and bacterial translocation after intestinal ischemia and reperfusion in an experimental rat model. Curr Ther Res Clin Exp. 2003;64(6):355–66.  https://doi.org/10.1016/s0011-393x(03)00091-2.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Colak T, Polat A, Bagdatoglu O, Kanik A, Turkmenoglu O, Aydin S. Effect of trapidil in ischemia/reperfusion injury on rat small intestine. J Investig Surg. 2003;16(3):167–76.CrossRefGoogle Scholar
  63. 63.
    Ben Shahar Y, Sukhotnik I, Bitterman N, Pollak Y, Bejar J, Chepurov D, et al. Effect of N-acetylserotonin on intestinal recovery following intestinal ischemia-reperfusion injury in a rat. Eur J Pediatr Surg. 2016;26(1):47–53.  https://doi.org/10.1055/s-0035-1559886.CrossRefPubMedGoogle Scholar
  64. 64.
    Tas U, Ayan M, Sogut E, Kuloglu T, Uysal M, Tanriverdi HI, et al. Protective effects of thymoquinone and melatonin on intestinal ischemia-reperfusion injury. Saudi J Gastroenterol. 2015;21(5):284–9.  https://doi.org/10.4103/1319-3767.166203.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yang B, Ni YF, Wang WC, Du HY, Zhang H, Zhang L, et al. Melatonin attenuates intestinal ischemia--reperfusion-induced lung injury in rats by upregulating N-myc downstream-regulated gene 2. J Surg Res. 2015;194(1):273–80.  https://doi.org/10.1016/j.jss.2014.11.018.CrossRefPubMedGoogle Scholar
  66. 66.
    Jiang LL, Zhang JJ, Zhang ZZ, He XH, Chen DL, Wang YL. Effect of intraperitoneal resuscitation with different concentrations of sodium pyruvate on intestinal ischemia reperfusion injury in hemorrhagic shock rat. Shock. 2016;45(4):441–9.  https://doi.org/10.1097/shk.0000000000000515.CrossRefPubMedGoogle Scholar
  67. 67.
    Zhang JJ, Zhang ZZ, Ke JJ, He XH, Zhan J, Chen DL, et al. Protection against intestinal injury from hemorrhagic shock by direct peritoneal resuscitation with pyruvate in rats. Shock. 2014;42(5):464–71.  https://doi.org/10.1097/shk.0000000000000230.CrossRefPubMedGoogle Scholar
  68. 68.
    Tassopoulos A, Chalkias A, Papalois A, Iacovidou N, Xanthos T. The effect of antioxidant supplementation on bacterial translocation after intestinal ischemia and reperfusion. Redox Rep. 2017;22(1):1–9.  https://doi.org/10.1080/13510002.2016.1229893.CrossRefPubMedGoogle Scholar
  69. 69.
    Borges SC, da Silva De Souza AC, Beraldi EJ, Schneider LC, Buttow NC. Resveratrol promotes myenteric neuroprotection in the ileum of rats after ischemia-reperfusion injury. Life Sci. 2016;166:54–9.  https://doi.org/10.1016/j.lfs.2016.09.016.CrossRefPubMedGoogle Scholar
  70. 70.
    Huang X, Zhao W, Hu D, Han X, Wang H, Yang J, et al. Resveratrol efficiently improves pulmonary function via stabilizing mast cells in a rat intestinal injury model. Life Sci. 2017;185:30–7.  https://doi.org/10.1016/j.lfs.2017.07.018.CrossRefPubMedGoogle Scholar
  71. 71.
    Xu X, Li D, Gao H, Gao Y, Zhang L, Du Y, et al. Protective effect of the traditional Chinese medicine xuesaitong on intestinal ischemia-reperfusion injury in rats. Int J Clin Exp Med. 2015;8(2):1768–79.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Jiang Y, Zhou Z, Meng QT, Sun Q, Su W, Lei S, et al. Ginsenoside Rb1 treatment attenuates pulmonary inflammatory cytokine release and tissue injury following intestinal ischemia reperfusion injury in mice. Oxidative Med Cell Longev. 2015;2015:843721.  https://doi.org/10.1155/2015/843721.CrossRefGoogle Scholar
  73. 73.
    Zhu J, Wang P, He Q, Zhou J, Luo C. Evidence of an anti-apoptotic effect of qinghuobaiduyin on intestinal mucosa following burn injury. Exp Ther Med. 2013;6(6):1390–6.  https://doi.org/10.3892/etm.2013.1314.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Mo LQ, Chen Y, Song L, Wu GM, Tang N, Zhang YY, et al. Osthole prevents intestinal ischemia-reperfusion-induced lung injury in a rodent model. J Surg Res. 2014;189(2):285–94.  https://doi.org/10.1016/j.jss.2014.03.026.CrossRefPubMedGoogle Scholar
  75. 75.
    Shen JT, Li YS, Xia ZQ, Wen SH, Yao X, Yang WJ, et al. Remifentanil preconditioning protects the small intestine against ischemia/reperfusion injury via intestinal delta- and mu-opioid receptors. Surgery. 2016;159(2):548–59.  https://doi.org/10.1016/j.surg.2015.07.028.CrossRefPubMedGoogle Scholar
  76. 76.
    Zhang XY, Liu ZM, Wen SH, Li YS, Li Y, Yao X, et al. Dexmedetomidine administration before, but not after, ischemia attenuates intestinal injury induced by intestinal ischemia-reperfusion in rats. Anesthesiology. 2012;116(5):1035–46.  https://doi.org/10.1097/ALN.0b013e3182503964.CrossRefPubMedGoogle Scholar
  77. 77.
    Gan X, Xing D, Su G, Li S, Luo C, Irwin MG, et al. Propofol attenuates small intestinal ischemia reperfusion injury through inhibiting NADPH oxidase mediated mast cell activation. Oxidative Med Cell Longev. 2015;2015:167014.  https://doi.org/10.1155/2015/167014.CrossRefGoogle Scholar
  78. 78.
    Zhao W, Zhou S, Yao W, Gan X, Su G, Yuan D, Hei Z. Propofol prevents lung injury after intestinal ischemia-reperfusion by inhibiting the interaction between mast cell activation and oxidative stress. Life Sci. 2014;108(2):80–7.  https://doi.org/10.1016/j.lfs.2014.05.009.CrossRefPubMedGoogle Scholar
  79. 79.
    Gan X, Su G, Zhao W, Huang P, Luo G, Hei Z. The mechanism of sevoflurane preconditioning-induced protections against small intestinal ischemia reperfusion injury is independent of mast cell in rats. Mediat Inflamm. 2013;2013:378703.  https://doi.org/10.1155/2013/378703.CrossRefGoogle Scholar
  80. 80.
    Liu C, Shen Z, Liu Y, Peng J, Miao L, Zeng W, Li Y. Sevoflurane protects against intestinal ischemia-reperfusion injury partly by phosphatidylinositol 3 kinases/Akt pathway in rats. Surgery. 2015;157(5):924–33.  https://doi.org/10.1016/j.surg.2014.12.013.CrossRefPubMedGoogle Scholar
  81. 81.
    Kim M, Park SW, Kim M, D’Agati VD, Lee HT. Isoflurane post-conditioning protects against intestinal ischemia-reperfusion injury and multiorgan dysfunction via transforming growth factor-beta1 generation. Ann Surg. 2012;255(3):492–503.  https://doi.org/10.1097/SLA.0b013e3182441767.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Harm S, Gabor F, Hartmann J. Low-dose polymyxin: an option for therapy of Gram-negative sepsis. Innate Immun. 2016;22(4):274–83.  https://doi.org/10.1177/1753425916639120.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Ji YY, Wang ZD, Wang SF, Wang BT, Yang ZA, Zhou XR, et al. Ischemic preconditioning ameliorates intestinal injury induced by ischemia-reperfusion in rats. World J Gastroenterol. 2015;21(26):8081–8.  https://doi.org/10.3748/wjg.v21.i26.8081.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Liu KX, Li YS, Huang WQ, Chen SQ, Wang ZX, Liu JX, Xia Z. Immediate postconditioning during reperfusion attenuates intestinal injury. Intensive Care Med. 2009;35(5):933–42.  https://doi.org/10.1007/s00134-009-1428-1.CrossRefPubMedGoogle Scholar
  85. 85.
    Wen SH, Ling YH, Li Y, Li C, Liu JX, Li YS, et al. Ischemic postconditioning during reperfusion attenuates oxidative stress and intestinal mucosal apoptosis induced by intestinal ischemia/reperfusion via aldose reductase. Surgery. 2013;153(4):555–64.  https://doi.org/10.1016/j.surg.2012.09.017.CrossRefPubMedGoogle Scholar
  86. 86.
    Rosero O, Onody P, Kovacs T, Molnar D, Fulop A, Lotz G, et al. Postconditioning: “Toll-erating” mesenteric ischemia-reperfusion injury? Surgery. 2017;161(4):1004–15.  https://doi.org/10.1016/j.surg.2016.09.031.CrossRefPubMedGoogle Scholar
  87. 87.
    Li C, Li YS, Xu M, Wen SH, Yao X, Wu Y, et al. Limb remote ischemic preconditioning for intestinal and pulmonary protection during elective open infrarenal abdominal aortic aneurysm repair: a randomized controlled trial. Anesthesiology. 2013;118(4):842–52.  https://doi.org/10.1097/ALN.0b013e3182850da5.CrossRefPubMedGoogle Scholar
  88. 88.
    Shen ZY, Zhang J, Song HL, Zheng WP. Bone-marrow mesenchymal stem cells reduce rat intestinal ischemia-reperfusion injury, ZO-1 downregulation and tight junction disruption via a TNF-alpha-regulated mechanism. World J Gastroenterol. 2013;19(23):3583–95.  https://doi.org/10.3748/wjg.v19.i23.3583.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Jensen AR, Doster DL, Hunsberger EB, Manning MM, Stokes SM, Barwinska D, et al. Human adipose stromal cells increase survival and mesenteric perfusion following intestinal ischemia and reperfusion injury. Shock. 2016;46(1):75–82.  https://doi.org/10.1097/shk.0000000000000571.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Jensen AR, Manning MM, Khaneki S, Drucker NA, Markel TA. Harvest tissue source does not alter the protective power of stromal cell therapy after intestinal ischemia and reperfusion injury. J Surg Res. 2016;204(2):361–70.  https://doi.org/10.1016/j.jss.2016.05.006.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Chang CL, Sung PH, Sun CK, Chen CH, Chiang HJ, Huang TH, et al. Protective effect of melatonin-supported adipose-derived mesenchymal stem cells against small bowel ischemia-reperfusion injury in rat. J Pineal Res. 2015;59(2):206–20.  https://doi.org/10.1111/jpi.12251.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xiao-Dong Chen
    • 1
  • Ke-Xuan Liu
    • 1
  1. 1.Department of AnesthesiologyNanfang Hospital, Southern Medical UniversityGuangzhouP. R. China

Personalised recommendations