Advertisement

Progress of Research in Neonatal Sepsis

  • Sheng Chen
  • Yuan Shi
Chapter

Abstract

Neonatal sepsis remains a significant global problem with little progress made despite major efforts. At present, there is a lack of an accepted international consensus on the definition, diagnosis, and treatment of neonatal sepsis; the unclear understanding of the pathogenesis of neonatal sepsis leads to blindness in treatment, which will result in an unsatisfactory therapeutic outcome. In addition, some serious diseases caused by noninfectious factors, such as trauma, stress, asphyxia, and so on, have very similar pathophysiological results with neonatal sepsis. In this review we synthesize the recent advances in definition, incidence, causative agents, risk factors, pathophysiology, clinical manifestations, and diagnosis and treatment of neonatal sepsis. Of course, there are still many challenges to neonatal sepsis in many ways.

Keywords

Pediatric Neonate Sepsis Septic shock Definition Surviving sepsis campaign Antibiotics Burden Causative agent Risk factor Diagnosis Management 

References

  1. 1.
    Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wynn JL. Defining neonatal sepsis. Curr Opin Pediatr. 2016;28(2):135–40.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012;379(9832):2151–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Brocklehurst P, Farrell B, King A, Juszczak E, Darlow B, Haque K, et al. Treatment of neonatal sepsis with intravenous immune globulin. N Engl J Med. 2011;365(13):1201–11.PubMedCrossRefGoogle Scholar
  5. 5.
    Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126(3):443–56.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Cohen-Wolkowiez M, Moran C, Benjamin DK, Cotten CM, Clark RH, Benjamin DK Jr, et al. Early and late onset sepsis in late preterm infants. Pediatr Infect Dis J. 2009;28(12):1052–6.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Barton L, Hodgman JE, Pavlova Z. Causes of death in the extremely low birth weight infant. Pediatrics. 1999;103(2):446–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA. 2004;292(19):2357–65.PubMedCrossRefGoogle Scholar
  9. 9.
    Jan AI, Ramanathan R, Cayabyab RG. Chorioamnionitis and management of asymptomatic infants ≥35 weeks without empiric antibiotics. Pediatrics. 2017;140(1):e20162744.PubMedCrossRefGoogle Scholar
  10. 10.
    Verani JR, McGee L, Schrag SJ, Division of Bacterial Diseases NCfIaRD, Centers for Disease Control and Prevention (CDC). Prevention of perinatal group B streptococcal disease–revised guidelines from CDC, 2010. MMWR Recomm Rep. 2010;59:1–36.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kaufman DA, Coggins SA, Zanelli SA, Weitkamp JH. Congenitalcutaneous candidiasis: rompt systemic treatment is associated withimproved outcomes in neonates. Clin Infect Dis. 2017;64(10):1387–95.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Barton M, Shen A, O’Brien K, Robinson JL, Davies HD, Simpson K, et al. Early onset invasive candidiasis in extremely low birthweight infants: perinatal acquisition predicts poor outcome. Clin Infect Dis. 2017;64(7):921–7.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Vergnano S, Menson E, Smith Z, Kennea N, Embleton N, Clarke P, et al. Characteristics of invasive Staphylococcus aureus in United Kingdom Neonatal Units. Pediatr Infect Dis J. 2011;30:850–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Investigators of the Delhi Neonatal Infection Study (DeNIS)collaboration. Characterisation and antimicrobial resistance of sepsis pathogens in neonates born in tertiary care centres in Delhi, India: a cohort study. Lancet Glob Health. 2016;4:e752–60.CrossRefGoogle Scholar
  15. 15.
    Kimberlin DW, Whitley RJ, Wan W, Powell DA, Storch G, Ahmed A, et al. Oral acyclovir suppression and neurodevelopment after neonatal herpes. N Engl J Med. 2011;365:1284–92.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Thompson C, Whitley R. Neonatal herpes simplex virus infections: where are we now? Adv Exp Med Biol. 2011;697:221–30.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Verboon-Maciolek MA, Krediet TG, Gerards LJ, de Vries LS, Groenendaal F, van Loon AM. Severe neonatal parechovirus infection and similarity with enterovirus infection. Pediatr Infect Dis J. 2008;27:241–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Trofa D, Gácser A, Nosanchuk JD. Candida parapsilosis, anemerging fungal pathogen. Clin Microbiol Rev. 2008;21:606–25.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Benjamin DK Jr, Stoll BJ, Gantz MG, Walsh MC, Sánchez PJ, Das A, et al. Neonatal candidiasis: epidemiology, risk factors, and clinical judgment. Pediatrics. 2010;126:e865–73.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Chan GJ, Lee ACC, Baqui AH, Tan J, Black RE. Risk of early-onset neonatal infection with maternal infection or colonization: a global systematic review and meta-analysis. PLoS Med. 2013;10:e1001502.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Jiang Z, Ye GY. 1:4 matched case-control study on influential factor of early onset neonatal sepsis. Eur Rev Med Pharmacol Sci. 2013;17:2460e6.Google Scholar
  22. 22.
    Mukhopadhyay S, Puopolo KM. Risk assessment in neonatal early onset sepsis. Semin Perinatol. 2012;36:408e15.CrossRefGoogle Scholar
  23. 23.
    Weston EJ, Pondo T, Lewis MM, Martell-Cleary P, Morin C, Jewell B, et al. The burden of invasive early-onset neonatal sepsis in the United States, 2005–2008. Pediatr Infect Dis J. 2011;30:937–41.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Schuchat A, Zywicki SS, Dinsmoor MJ, Mercer B, Romaguera J, O’Sullivan MJ, et al. Risk factors and opportunities for prevention of early-onset neonatal sepsis: a multicenter case-control study. Pediatrics. 2000;105(1 Pt 1):21–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Wynn JL, Levy O. Role of innate host defenses in susceptibility to early-onset neonatal sepsis. Clin Perinatol. 2010;37:307e37.Google Scholar
  26. 26.
    Stoll BJ, Hansen NI, Higgins RD, Fanaroff AA, Duara S, Goldberg R, et al. Very low birth weight preterm infants with early onset neonatal sepsis: the predominance of gram-negative infections continues in the National Institute of Child Health and Human Development Neonatal Research Network, 2002–2003. Pediatr Infect Dis J. 2005;24:635–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics. 2002;110:285–91.PubMedCrossRefGoogle Scholar
  28. 28.
    Samuelsson A, Isaksson B, Hanberger H, Olhager E. Late-onset neonatal sepsis, risk factors and interventions: an analysis of recurrent outbreaks of Serratia marcescens, 2006–2011. J Hosp Infect. 2014;86:57–63.PubMedCrossRefGoogle Scholar
  29. 29.
    Hoffman MA, Snowden JN, Simonsen KA, Nenninger TM, Lyden ER, Anderson-Berry AL. Neonatal late-onset sepsis following peripherally inserted central catheter removal: as-sociation with antibiotic use and adverse line events. J Infus Nurs. 2015;38:129–34.PubMedCrossRefGoogle Scholar
  30. 30.
    Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.CrossRefGoogle Scholar
  31. 31.
    Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.PubMedCrossRefGoogle Scholar
  32. 32.
    de Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166(1):98–104.PubMedCrossRefGoogle Scholar
  33. 33.
    Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL, et al. EarlyMicrocirculatory perfusion derangements in patients with severe sepsis and septic shock:Relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med. 2007;49(1):88–98, 98 e81-82PubMedCrossRefGoogle Scholar
  34. 34.
    Sakr Y, Dubois MJ, de Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32(9):1825–31.PubMedCrossRefGoogle Scholar
  35. 35.
    Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;9(Suppl 4):S13–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Spronk PE, Zandstra DF, Ince C. Bench-to-bedside review: sepsis is a disease of the microcirculation. Crit Care. 2004;8(6):462–8.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ait-Oufella H, Maury E, Lehoux S, Guidet B, Offenstadt G. The endothelium: physiological functions and role in microcirculatory failure during severe sepsis. Intensive Care Med. 2010;36(8):1286–98.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125:1241–52.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 2012;26:711–23.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Singer M. Mitochondrial function in sepsis: acute phase versus multiple organ failure. Crit Care Med. 2007;35(9 Suppl):S441–8.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Larsen FJ, Schiffer TA, Weitzberg E, Lundberg JO. Regulation of mitochondrial function and energetics by reactive nitrogen oxides. Free Radic Biol Med. 2012;53:1919–28.PubMedCrossRefGoogle Scholar
  42. 42.
    Haden DW, Suliman HB, Carraway MS, Welty-Wolf KE, Ali AS, Shitara H, et al. Mitochon-drial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. Am J Respir Crit Care Med. 2007;176:768–77.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014;5:66–72.CrossRefGoogle Scholar
  44. 44.
    Carré JE, Orban JC, Re L, Felsmann K, Iffert W, Bauer M, et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med. 2010;182:745–51.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence. 2014;5:4–11.PubMedCrossRefGoogle Scholar
  46. 46.
    Ferro TN, Goslar PW, Romanovsky AA, Petersen SR. Smoking in trauma patients: the effects on the incidenceof sepsis, respiratory failure, organ failure, and mortality. J Trauma. 2010;69:308–12.PubMedCrossRefGoogle Scholar
  47. 47.
    Huttunen R, Laine J, Lumio J, Vuento R, Syrjänen J. Obesity and smoking are factors associated with poor prognosis in patients with bacteraemia. BMC Infect Dis. 2007;7:13.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Boulos M, Astiz ME, Barua RS, Osman M. Impaired mitochondrial function induced by serum from septic shockpatients is attenuated by inhibition of nitric oxide synthase and poly(ADP-ribose) synthase. Crit Care Med. 2003;31:353–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–23.CrossRefGoogle Scholar
  50. 50.
    Chen Y, Wang Y, Chen J, Chen X, Cao W, Chen S, et al. Roles of transcriptional corepressor RIP140 and coactivator PGC-1alpha in energy state of chronically infarcted rat hearts and mitochondrial function of cardiomyocytes. Mol Cell Endocrinol. 2012;362:11–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Finck BN, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation. 2007;115:2540–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Grégoire M, Tadié JM, Uhel F, Gacouin A, Piau C, Bone N, et al. Frontline science: HMGB1 induces neutrophil dysfunction in experimental sepsisand in patients who survive septic shock. J Leukoc Biol. 2017;101(6):1281–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Liu Z, Bone N, Jiang S, Park DW, Tadie JM, Deshane J, et al. AMP-activated protein kinase and Glycogen Synthase Kinase 3β modulate the severity of sepsis-induced lung injury. Mol Med. 2015;21:937.  https://doi.org/10.2119/molmed.2015.00198.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Stoll BJ, Shame AL. Infections of the neonatal infant. In: Kliegman R, Stanton B, St Geme J, Schor N, editors. Nelson textbook of pediatrics. 20th ed. Philadelphia: Elsevier; 2015. p. 909–25.Google Scholar
  55. 55.
    WHO. WHO guidelines on drawing blood: best practices in phlebotomy. 2010. http://apps.who.int/iris/bitstream/10665/44294/1/9789241599221_eng.pdf. Accessed 18 Apr 2017.
  56. 56.
    Malcolmson C, Ng K, Hughes S, Kissoon N, Schina J, Tilley PA, et al. Impact of matrix-assisted laser desorption and ionization time-of-flight and antimicrobial stewardship intervention on treatment of bloodstream infections in hospitalized children. J Pediatric Infect Dis Soc. 2017;6(2):178–86.PubMedGoogle Scholar
  57. 57.
    Ruangkit C, Satpute A, Vogt BA, Hoyen C, Viswanathan S. Incidence and risk factors of urinary tract infection in very low birth weight infants. J Neonatal Perinatal Med. 2016;9:83–90.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Benitz WE. Adjunct laboratory tests in the diagnosis of early-onset neonatal sepsis. Clin Perinatol. 2010;37:421–38.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Newman TB, Draper D, Puopolo KM, Wi S, Escobar GJ. Combining immature and total neutrophil counts to predict early onset sepsis in term and late preterm newborns: use of the I/T2. Pediatr Infect Dis J. 2014;33:798–802.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Pugni L, Pietrasanta C, Milani S, Vener C, Ronchi A, Falbo M, et al. Presepsin (soluble CD14 subtype): reference ranges of a new sepsis marker in term and preterm neonates. PLoS One. 2015;10(12):e014602070.CrossRefGoogle Scholar
  61. 61.
    Mussap M, Puxeddu E, Puddu M, Ottonello G, Coghe F, Comite P, et al. Soluble CD14 subtype (sCD14-ST) presepsin in premature and full term critically ill newborns with sepsis and SIRS. Clin Chim Acta. 2015;451:65–70.PubMedCrossRefGoogle Scholar
  62. 62.
    Hofer N, Zacharias E, Muller W, Resch B. An update on the use of C-reactive protein in early-onset neonatal sepsis: current insights and new tasks. Neonatology. 2012;102:25–36.PubMedCrossRefGoogle Scholar
  63. 63.
    Bhandari V. Effective biomarkers for diagnosis of neonatal sepsis. J Pediatric Infect Dis Soc. 2014;3:234–45.PubMedCrossRefGoogle Scholar
  64. 64.
    Rotshenker-Olshinka K, Shinwell ES, Juster-Reicher A, Rosin I, Flidel-Rimon O. Comparison of hematologic indices and markers of infection in umbilical cord and neonatal blood. J Matern Fetal Neonatal Med. 2014;27:625–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Beeram MR, Loughran C, Cipriani C, Govande V. Utilization of umbilical cord blood for the evaluation of group B streptococcal sepsis screening. Clin Pediatr (Phila). 2012;51:447–53.CrossRefGoogle Scholar
  66. 66.
    Meena J, Charles MV, Ali A, Ramakrishnan S, Gosh S, Seetha KS. Utility of cord blood culture in early onset neonatal sepsis. Australas Med J. 2015;8:263–7.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Su H, Chang SS, Han CM, et al. Inflammatory markers in cord blood or maternal serum for early detection of neonatal sepsis-a systemic review and meta-analysis. J Perinatol. 2014;34:268–74.PubMedCrossRefGoogle Scholar
  68. 68.
    Howman RA, Charles AK, Jacques A, Doherty DA, Simmer K, Strunk T, et al. Inflammatory and haematological markers in the maternal, umbilical cord and infant circulation in histological chorioamnionitis. PLoS One. 2012;7:e51836.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Buhimschi CS, Bhandari V, Han YW, Dulay AT, Baumbusch MA, Madri JA, et al. Using proteomics in perinatal and neonatal sepsis: hopes and challenges for the future. Curr Opin Infect Dis. 2009;22:235–43.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Buhimschi CS, Bhandari V, Hamar BD, Bahtiyar MO, Zhao G, Sfakianaki AK, et al. Proteomic profiling of the amniotic fluid to detect inflammation, infection, and neonatal sepsis. PLoS Med. 2007;4:e18.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ng PC, Ang IL, Chiu RW, Li K, Lam HS, Wong RP, Chui KM, et al. Host-response biomarkers for diagnosis of late-onset septicemia and necrotizing enterocolitis in preterm infants. J Clin Invest. 2010;120:2989–3000.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Dessì A, Corsello G, Stronati M, Gazzolo D, Caboni P, Carboni R, et al. New diagnostic possibilities in systemic neonatal infections: metabolomics. Early Hum Dev. 2014;90(Suppl 1):S19–21.PubMedCrossRefGoogle Scholar
  73. 73.
    Fanos V, Caboni P, Corsello G, Stronati M, Gazzolo D. Urinary 1 H-NMR and GC-MS metabolomics predicts early and late onset neonatal sepsis. Early Hum Dev. 2014;90:S78–83.PubMedCrossRefGoogle Scholar
  74. 74.
    Mckiernan CA, Lieberman SA. Circulatory shock in children: an overview. Pediatr Rev. 2005;26(12):451–60.PubMedCrossRefGoogle Scholar
  75. 75.
    Caresta E, Papoff P, Valentini SB, Mancuso M, Cicchetti R. What’s new in the treatment of neonatal shock. J Matern Fetal Neonatal Med. 2011;24(sup1):17–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Sivanandan S, Soraisham AS, Swarnam K. Choice and duration of antimicrobial therapy for neonatal sepsis and meningitis. Int J Pediatr. 2011;2011:712150.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Garciaprats JA, Cooper TR, Schneider VF, Stager CE, Hansen TN. Rapid detection of microorganisms in blood cultures of newborn infants utilizing an automated blood culture system. Pediatrics. 2000;105(3 Pt 1):523–7.CrossRefGoogle Scholar
  78. 78.
    Saini SS, Dutta S, Ray P, Narang A. Short course versus 7-day course of intravenous antibiotics for probable neonatal septicemia: a pilot, open-label, randomized controlled trial. Indian Pediatr. 2011;48:19–24.PubMedCrossRefGoogle Scholar
  79. 79.
    Ehl S, Gering B, Bartmann P, Högel J, Pohlandt F. C-reactive protein is a useful marker for guiding duration of antibiotic therapy in suspected neonatal bacterial infection. Pediatrics. 1997;99:216–21.PubMedCrossRefGoogle Scholar
  80. 80.
    Al-Zwaini EJ. C-reactive protein: a useful marker for guiding duration of antibiotic therapy in suspected neonatal septicaemia? East Mediterr Health J. 2009;15:269–75.PubMedCrossRefGoogle Scholar
  81. 81.
    Stocker M, Fontana M, El Helou S, et al. Use of procalcitonin-guided decision-making to shorten antibiotic therapy in suspected neonatal early-onset sepsis: prospective randomized intervention trial. Neonatology. 2010;97:165–74.PubMedCrossRefGoogle Scholar
  82. 82.
    Murphy K, Weiner J. Use of leukocyte counts in evaluation of early-onset neonatal sepsis. Pediatr Infect Dis J. 2012;31:16–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Molyneux E, Nizami SQ, Saha S, Huu KT, Azam M, Bhutta ZA, Zaki R, Weber MW, Qazi SA. 5 versus 10 days of treatmentwith ceftriaxone for bacterial meningitis in children: a double-blind randomised equivalence study. Lancet. 2011;377(9780):1837–45.PubMedCrossRefGoogle Scholar
  84. 84.
    Greenwood C, Morrow AL, Lagomarcino AJ, Altaye M, Taft DH, Yu Z, et al. Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr. 2014;165:23–9.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Vincent JL, Ramesh MK, Ernest D, LaRosa SP, Pachl J, Aikawa N, et al. A randomized, double-blind, placebo-controlled, Phase 2b study to evaluate the safety and efficacy of recombinant human soluble thrombomodulin, ART-123, in patients with sepsis and suspected disseminated intravascular coagulation. Crit Care Med. 2013;41:2069–79.PubMedCrossRefGoogle Scholar
  86. 86.
    Levin M, Quint PA, Goldstein B, Barton P, Bradley JS, Shemie SD, et al. Recombinant bactericidal/permeability-increasing protein (rBPI 21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. Lancet. 2000;356:961–7.PubMedCrossRefGoogle Scholar
  87. 87.
    López A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival inpatients with septic shock. Crit Care Med. 2004;32:21–30.PubMedCrossRefGoogle Scholar
  88. 88.
    Carr R, Modi N, Doré CJ. G-CSF and GM-CSF for treating or preventing neonatal infections. Cochrane Libr. 2003;3(3):CD003066.Google Scholar
  89. 89.
    Kreymann KG, de Heer G, Nierhaus A, Kluge S. Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med. 2007;35:2677–85.PubMedGoogle Scholar
  90. 90.
    Akdag A, Dilmen U, Haque K, Dilli D, Erdeve O, Goekmen T. Role of pentoxifylline and/or IgM-enriched intravenous immunoglobulin in the management of neonatal sepsis. Am J Perinatol. 2014;31(10):905–12.PubMedCrossRefGoogle Scholar
  91. 91.
    The INIS Collaborative Group. Treatment of neonatal sepsis with intravenous immune globulin. N Engl J Med. 2011;365:1201–11.CrossRefGoogle Scholar
  92. 92.
    Zhou F, Peng Z, Murugan R, Kellum JA. Blood purification and mortality in sepsis: a meta-analysis of randomized trials. Crit Care Med. 2013;41:2209–20.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kalil AC, Florescu MC. Blood purification: can we purify our patients from sepsis. Crit Care Med. 2013;41:2244–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Nguyen TC, Kiss JE, Goldman JR, Carcillo JA. The role of plasmapheresis in critical illness. Crit Care Clin. 2012;28:453–68.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Macrae D, Grieve R, Allen E, Sadique Z, Morris K, Pappachan J, et al. CHiP investigators: a rando-mized trial of hyperglycemic control in pediatric intensive care. N Engl J Med. 2014;370:107–18.PubMedCrossRefGoogle Scholar
  96. 96.
    Choong K, Bohn D, Fraser DD, Gaboury I, Hutchison JS, Joffe AR, Canadian Critical Care Trials Group, et al. Vasopressin in pediatric vasodilatory shock: a multicenter randomized controlled trial. Am J Respir Crit Care Med. 2009;180:632–9.PubMedCrossRefGoogle Scholar
  97. 97.
    de Oliveira CF, de Oliveira DS, Gottschald AF, Moura JD, Costa GA, Ventura AC, et al. ACCM/PALS haemodynamic support guidelines for paediatric septic shock: an outcomes comparison with and without monitoring central venous oxygen saturation. Intensive Care Med. 2008;34:1065–75.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Chapman CE, Stainsby D, Jones H, Love E, Massey E, Win N, Serious Hazards of Transfusion Steering Group, et al. Ten years of hemovigilance reports of transfusion-related acute lung injury in the United Kingdom and the impact of preferential use of male donor plasma. Transfusion. 2009;49:440–52.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Karam O, Tucci M, Ducruet T, Hume H, Lacroix J, Gauvin F, Canadian Critical Care Trials Group, The PALISI Network. Red blood cell transfusion thresholds in pediatric septic patients. Pediatr Crit Care Med. 2011;12:512–8.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sheng Chen
    • 1
  • Yuan Shi
    • 2
    • 3
  1. 1.Department of Pediatrics, Southwest HospitalThird Military Medical UniversityChongqingChina
  2. 2.Children’s HospitalChongqing Medical UniversityChongqingChina
  3. 3.Daping Hospital, Army Medical UniversityRawalpindiPakistan

Personalised recommendations