Advertisement

Damage Control in Abdominal Compartment Syndrome

  • Cheng Zhao
  • Jianan Ren
Chapter

Abstract

Abdominal compartment syndrome (ACS) is the endpoint of increased intra-abdominal pressure (IAP) which is the result of massive interstitial swelling in the abdomen or rapid development of a space-filling lesion within the abdomen. The intra-abdominal hypertension (IAH) leads to decreased abdomen perfusion pressure (APP) resulting in abdominal viscera dysfunction contributing to multi-organ dysfunction (MOD) and ischemia which lead to high mortality. Measurement has been taken to monitor the IAP for the contradiction between resuscitation and the massive interstitial swelling which lead to IAH. Besides the monitor measurements, damage control was introduced to save the severely injured patients who are on the edge of physiological limit. Damage control resuscitation and damage control surgery were conducted to maintain the balance among physiological limit, resuscitation, and controllable IAP. There is minimal original article about the pathophysiology of ACS. Most results were from clinical trial. Many early studies of IAH and ACS used discordant definitions or cutoff pressure values. In this review, nomenclature will follow the terminology established by the World Society of the Abdominal Compartment Syndrome (WSACS) which has recently been standardized and accepted widely. This chapter reviewed the history and the pathophysiology of ACS and the application of damage control.

Keywords

Abdominal compartment syndrome Damage control surgery Intra-abdominal hypertension Multi-organ dysfunction Open abdomen 

Abbreviations

ACS

Abdominal compartment syndrome

APP

Abdominal perfusion pressure

ATLS

Advanced trauma life support

IAH

Intra-abdominal hypertension

IAP

Intra-abdominal pressure

ICU

Intensive care unit

MAP

Mean arterial pressure

MTP

Massive transfusion protocol

OA

Open abdomen

PCD

Percutaneous catheter drainage

PEEP

Positive end-expiratory pressure

PPV

Pulse pressure variation

TAC

Temporary abdominal closure

tPA

Tissue plasminogen activator

WSACS

World Society of the Abdominal Compartment Syndrome

References

  1. 1.
    Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain ML, De Keulenaer B, Duchesne J, Bjorck M, Leppaniemi A, Ejike JC, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the world Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013;39(7):1190–206.CrossRefGoogle Scholar
  2. 2.
    Bailey J, Shapiro MJ. Abdominal compartment syndrome. Crit Care. 2000;4(1):23–9.CrossRefGoogle Scholar
  3. 3.
    Van Hee R. Historical highlights in concept and treatment of abdominal compartment syndrome. Acta Clin Belg. 2007;62(Suppl 1):9–15.PubMedGoogle Scholar
  4. 4.
    De Santis L, Frigo F, Bruttocao A, Terranova O. Pathophysiology of giant incisional hernias with loss of abdominal wall substance. Acta Bio-Medica: Atenei Parmensis. 2003;74(Suppl 2):34–7.Google Scholar
  5. 5.
    Bradley SE, Bradley GP. The effect of increased intra-abdominal pressure on renal function in man. J Clin Invest. 1947;26(5):1010–22.CrossRefGoogle Scholar
  6. 6.
    Bradley SE, Mudge GH, Blake WD, Alphonse P. The effect of increased intra-abdominal pressure on the renal excretion of water and electrolytes in normal human subjects and in patients with diabetes insipidus. Acta Clin Belg. 1955;10(3):209–23.CrossRefGoogle Scholar
  7. 7.
    Zhang AK. The potential participation of abdominal pressure in preeclampsia. Med Hypotheses. 2015;84(6):583–5.CrossRefGoogle Scholar
  8. 8.
    Ridings PC, Bloomfield GL, Blocher CR, Sugerman HJ. Cardiopulmonary effects of raised intra-abdominal pressure before and after intravascular volume expansion. J Trauma. 1995;39(6):1071–5.CrossRefGoogle Scholar
  9. 9.
    Kron IL, Harman PK, Nolan SP. The measurement of intra-abdominal pressure as a criterion for abdominal re-exploration. Ann Surg. 1984;199(1):28–30.CrossRefGoogle Scholar
  10. 10.
    Mullens W, Abrahams Z, Skouri HN, Francis GS, Taylor DO, Starling RC, Paganini E, Tang WH. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J Am Coll Cardiol. 2008;51(3):300–6.CrossRefGoogle Scholar
  11. 11.
    Cattermole GN, Leung PY, Ho GY, Lau PW, Chan CP, Chan SS, Smith BE, Graham CA, Rainer TH. The normal ranges of cardiovascular parameters measured using the ultrasonic cardiac output monitor. Physiol Rep. 2017;5(6):e13195.CrossRefGoogle Scholar
  12. 12.
    Barnes GE, Laine GA, Giam PY, Smith EE, Granger HJ. Cardiovascular responses to elevation of intra-abdominal hydrostatic pressure. Am J Phys. 1985;248(2. Pt 2):R208–13.Google Scholar
  13. 13.
    Diebel LN, Wilson RF, Tagett MG, Kline RA. End-diastolic volume. A better indicator of preload in the critically ill. Archives of Surgery (Chicago, Ill: 1960). 1992;127(7):817–21.. discussion 821-812CrossRefGoogle Scholar
  14. 14.
    Harman PK, Kron IL, McLachlan HD, Freedlender AE, Nolan SP. Elevated intra-abdominal pressure and renal function. Ann Surg. 1982;196(5):594–7.CrossRefGoogle Scholar
  15. 15.
    Diebel LN, Dulchavsky SA, Wilson RF. Effect of increased intra-abdominal pressure on mesenteric arterial and intestinal mucosal blood flow. J Trauma. 1992;33(1):45–8.. discussion 48-49CrossRefGoogle Scholar
  16. 16.
    Peoc’h K, Nuzzo A, Guedj K, Paugam C, Corcos O. Diagnosis biomarkers in acute intestinal ischemic injury: so close, yet so far. Clin Chem Lab Med. 2017;56(3):373–85.CrossRefGoogle Scholar
  17. 17.
    Klingensmith NJ, Coopersmith CM. The gut as the motor of multiple organ dysfunction in critical illness. Crit Care Clin. 2016;32(2):203–12.CrossRefGoogle Scholar
  18. 18.
    Mittal R, Coopersmith CM. Redefining the gut as the motor of critical illness. Trends Mol Med. 2014;20(4):214–23.CrossRefGoogle Scholar
  19. 19.
    Clark JA, Coopersmith CM. Intestinal crosstalk: a new paradigm for understanding the gut as the “motor” of critical illness. Shock (Augusta, Ga). 2007;28(4):384–93.CrossRefGoogle Scholar
  20. 20.
    Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV. Multiple-organ-failure syndrome. Archives of surgery (Chicago, Ill: 1960). 1986;121(2):196–208.CrossRefGoogle Scholar
  21. 21.
    Addington WR, Stephens RE, Phelipa MM, Widdicombe JG, Ockey RR. Intra-abdominal pressures during voluntary and reflex cough. Cough (London, England). 2008;4:2.Google Scholar
  22. 22.
    Cheatham ML, De Waele JJ, De Laet I, De Keulenaer B, Widder S, Kirkpatrick AW, Cresswell AB, Malbrain M, Bodnar Z, Mejia-Mantilla JH, et al. The impact of body position on intra-abdominal pressure measurement: a multicenter analysis. Crit Care Med. 2009;37(7):2187–90.CrossRefGoogle Scholar
  23. 23.
    Shapiro MB, Jenkins DH, Schwab CW, Rotondo MF. Damage control: collective review. J Trauma. 2000;49(5):969–78.CrossRefGoogle Scholar
  24. 24.
    Rotondo MF, Schwab CW, McGonigal MD, Phillips GR 3rd, Fruchterman TM, Kauder DR, Latenser BA, Angood PA. ‘Damage control’: an approach for improved survival in exsanguinating penetrating abdominal injury. J Trauma. 1993;35(3):375–82.. discussion 382-373CrossRefGoogle Scholar
  25. 25.
    Griggs C, Butler K. Damage control and the open abdomen: challenges for the nonsurgical intensivist. J Intensive Care Med. 2016;31(9):567–76.CrossRefGoogle Scholar
  26. 26.
    Ogilvie WH. Abdominal actinomycosis treated with sulphapyridine. Br Med J. 1940;2(4155):254–5.CrossRefGoogle Scholar
  27. 27.
    Shaikh IA, Ballard-Wilson A, Yalamarthi S, Amin AI. Use of topical negative pressure in assisted abdominal closure does not lead to high incidence of enteric fistulae. Color Dis. 2010;12(9):931–4.CrossRefGoogle Scholar
  28. 28.
    Fansler RF, Taheri P, Cullinane C, Sabates B, Flint LM. Polypropylene mesh closure of the complicated abdominal wound. Am J Surg. 1995;170(1):15–8.CrossRefGoogle Scholar
  29. 29.
    Keramati M, Srivastava A, Sakabu S, Rumbolo P, Smock M, Pollack J, Troop B. The Wittmann patch is a temporary abdominal closure device after decompressive celiotomy for abdominal compartment syndrome following burn. Burns. 2008;34(4):493–7.CrossRefGoogle Scholar
  30. 30.
    Cro C, George KJ, Donnelly J, Irwin ST, Gardiner KR. Vacuum assisted closure system in the management of enterocutaneous fistulae. Postgrad Med J. 2002;78(920):364–5.CrossRefGoogle Scholar
  31. 31.
    Yuan Y, Ren J, Zhang W, Chen J, Li J. The effect of different temporary abdominal closure materials on the growth of granulation tissue after the open abdomen. J Trauma. 2011;71(4):961–5.CrossRefGoogle Scholar
  32. 32.
    Deng Y, Ren J, Chen G, Li G, Wu X, Wang G, Gu G, Li J. Injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for abdominal tissue regeneration. Sci Rep. 2017;7(1):2699.CrossRefGoogle Scholar
  33. 33.
    Hashizume R, Fujimoto KL, Hong Y, Amoroso NJ, Tobita K, Miki T, Keller BB, Sacks MS, Wagner WR. Morphological and mechanical characteristics of the reconstructed rat abdominal wall following use of a wet electrospun biodegradable polyurethane elastomer scaffold. Biomaterials. 2010;31(12):3253–65.CrossRefGoogle Scholar
  34. 34.
    Stafiej P, Kung F, Thieme D, Czugala M, Kruse FE, Schubert DW, Fuchsluger TA. Adhesion and metabolic activity of human corneal cells on PCL based nanofiber matrices. Mater Sci Eng C Mater Biol Appl. 2017;71:764–70.CrossRefGoogle Scholar
  35. 35.
    Gouveia PJ, Rosa S, Ricotti L, Abecasis B, Almeida HV, Monteiro L, Nunes J, Carvalho FS, Serra M, Luchkin S, et al. Flexible nanofilms coated with aligned piezoelectric microfibers preserve the contractility of cardiomyocytes. Biomaterials. 2017;139:213–28.CrossRefGoogle Scholar
  36. 36.
    Stone HH, Strom PR, Mullins RJ. Management of the major coagulopathy with onset during laparotomy. Ann Surg. 1983;197(5):532–5.CrossRefGoogle Scholar
  37. 37.
    Burch JM, Ortiz VB, Richardson RJ, Martin RR, Mattox KL, Jordan GL Jr. Abbreviated laparotomy and planned reoperation for critically injured patients. Ann Surg. 1992;215(5):476–83.. discussion 483-474CrossRefGoogle Scholar
  38. 38.
    Roback JD, Caldwell S, Carson J, Davenport R, Drew MJ, Eder A, Fung M, Hamilton M, Hess JR, Luban N, et al. Evidence-based practice guidelines for plasma transfusion. Transfusion. 2010;50(6):1227–39.CrossRefGoogle Scholar
  39. 39.
    Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54(6):1127–30.CrossRefGoogle Scholar
  40. 40.
    Sondeen JL, Coppes VG, Holcomb JB. Blood pressure at which rebleeding occurs after resuscitation in swine with aortic injury. J Trauma. 2003;54(5 Suppl):S110–7.PubMedGoogle Scholar
  41. 41.
    Malone DL, Hess JR, Fingerhut A. Massive transfusion practices around the globe and a suggestion for a common massive transfusion protocol. J Trauma. 2006;60(6 Suppl):S91–6.CrossRefGoogle Scholar
  42. 42.
    Cohen MJ. Towards hemostatic resuscitation: the changing understanding of acute traumatic biology, massive bleeding, and damage-control resuscitation. Surg Clin North Am. 2012;92(4):877–91, viii.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Cheng Zhao
    • 1
  • Jianan Ren
    • 1
  1. 1.Department of SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina

Personalised recommendations