Advertisement

Bridge-Site Extreme Wind Prediction

  • Yang DengEmail author
  • Aiqun Li
Chapter

Abstract

During the lifetime of a bridge, the mean wind velocity is one of the most important requirements for evaluating the wind resistance of the bridge. Usually, the mean wind velocity is statistically described by a random variable model. We have been particularly interested in determining the extreme velocity in a given return period using statistical extrapolation. A lot of efforts have been put into estimation of the extreme velocity.

References

  1. 1.
    Simiu E. Modern developments in wind engineering: part 1. Eng Struct. 1981;3(4):233–41.CrossRefGoogle Scholar
  2. 2.
    Ge YJ, Xiang HF. Statistical study for mean wind velocity in Shanghai area. J Wind Eng Ind Aerodyn. 2002;90(12–15):1585–99.CrossRefGoogle Scholar
  3. 3.
    An Y, Pandey MD. A comparison of method of extreme wind speed estimation. J Wind Eng Ind Aerodyn. 2005;93(7):535–45.CrossRefGoogle Scholar
  4. 4.
    Xiao YQ, Li QS, Li ZN, Chow YW, Li GQ. Probability distributions of extreme wind speed and its occurrence interval. Eng Struct. 2006;28(8):1173–81.CrossRefGoogle Scholar
  5. 5.
    Deng Y, Ding Y, Li A. Prediction of extreme wind velocity at the site of the Runyang Suspension Bridge. J Zhejiang Univ Sci A. 2011;12(8):605–15.CrossRefGoogle Scholar
  6. 6.
    Gumbel EJ. Statistics of extremes. New York: Columbia University Press; 1958.zbMATHGoogle Scholar
  7. 7.
    Mayne JR. The estimation of extreme winds. J Wind Eng Ind Aerodyn. 1979;5(1–2):109–37.CrossRefGoogle Scholar
  8. 8.
    Simiu E, Scanlan RH. Wind effects on structures. 3rd ed. New York: Wiley; 1996.Google Scholar
  9. 9.
    Holmes JD. Wind loading of structures. London: Spon Press; 2001.CrossRefGoogle Scholar
  10. 10.
    Li GQ, Li QS. Theory and its application of time-dependent reliability of engineering structures. Beijing: Science Press; 2001.Google Scholar
  11. 11.
    Cook NJ. Confidence limits for extreme wind speeds in mixed climates. J Wind Eng Ind Aerodyn. 2004;92(1):41–51.CrossRefGoogle Scholar
  12. 12.
    Ko JM, Ni YQ. Technology developments in structural health monitoring of large-scale bridges. Eng Struct. 2005;27(12):1715–25.CrossRefGoogle Scholar
  13. 13.
    Deng Y, Ding YL, Li AQ. Structural condition assessment of long-span suspension bridges using long-term monitoring data. Earthq Eng Eng Vib. 2010;9(1):123–31.Google Scholar
  14. 14.
    Xu YL, Zhu LD, Wong KY, Chan KWY. Field measurement results of Tsing Ma suspension Bridge during Typhoon Victor. Struct Eng Mech. 2000;10(6):545–59.CrossRefGoogle Scholar
  15. 15.
    Zhu LD, Xu YL, Zhang F, Xiang HF. Measurement of aerodynamic coefficients of tower components of Tsing Ma Bridge under yaw winds. Wind Struct. 2003;6(1):53–70.CrossRefGoogle Scholar
  16. 16.
    Deng Y, Li AQ, Ding YL, Sun J. Long-term monitoring and analysis of the wind environment at the site of Runyang Suspension Bridge. Acta Aerodynamica Sinica. 2009;27(6):632–8.Google Scholar
  17. 17.
    Wang H, Li AQ, Jiao CK, Li XP. Characteristics of strong winds at the Runyang Suspension Bridge based on field tests from 2005 to 2008. J Zhejiang Univ Sci A. 2010;11(7):465–76.CrossRefGoogle Scholar
  18. 18.
    Pandey MD. Direct estimation of quantile functions using the maximum entropy principle. Struct Saf. 2000;22(1):61–79.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Chen X, Qi H, Zhang Y, Wu C. Optimal design of a two-stage mounting isolation system by the maximum entropy approach. J Sound Vib. 2001;243(4):591–9.CrossRefGoogle Scholar
  20. 20.
    Li AQ, Miao CQ, Li ZX, Han XL, Wu SD, Ji L, Yang YD. Health monitoring system for the Runyang Yangtse River Bridge. J Southeast Univ (Natural Science Edition). 2003;33(5):544–8.Google Scholar
  21. 21.
    Shannon CE. The mathematical theory of communication. Urbana: The University of Illinois Press; 1949.zbMATHGoogle Scholar
  22. 22.
    Kapur JN, Kesavan HK. Entropy optimization principles with applications. SanDiego: Academic Press Inc.; 1992.CrossRefGoogle Scholar
  23. 23.
    Jaynes ET. Information theory and statistical mechanics. Phys Rev. 1957;106(4):620–30.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Chen JH. The convergence analysis of inexact Gauss-Newton methods for nonlinear problems. Comput Optimization Appl. 2008;40(1):97–118.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wei Z, Ye JH, Shen SZ. Engineering application of the maximum entropy reliability theory. J Vib Shock. 2007;26(6):146–52.Google Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Beijing Advanced Innovation Center for Future Urban DesignBeijing University of Civil Engineering and ArchitectureBeijingChina

Personalised recommendations