Investigation into Plastic Deformation and Machining-Induced Subsurface Damage of High-Entropy Alloys

  • Jia Li
  • Qihong FangEmail author
Part of the Springer Tracts in Mechanical Engineering book series (STME)


High-entropy alloys (HEAs), which contain more than five principal elements with equal or near equal atomic percent, exhibit high wear resistant, high strength, and great plasticity. However, the plastic deformation mechanism and the machining-induced subsurface damage of HEAs at nanoscale are not yet fully understood, to limit their widely practical utility. Based on the experiment, AlCrFeCuNi HEA of atomic model is built through a melting and quick quenching method. In this work, we study the mechanical behaviors of AlCrFeCuNi HEA under uniaxial tensile loading and scratching processes by molecular dynamics (MD) simulations, in terms of the scratching force, atomic strain, atomic displacement, microstructural evolution, and dislocation density. The results show that the HEA obtained from MD simulations not only has high strength, but also exhibits good plasticity which is qualitatively consistent with the experiment. The dislocation gliding, dislocation pinning, and twinning subjected to the severe atomic lattice distortion and solid solution effects are still the main mechanism of plastic deformation in HEA. In addition, the larger tangential and normal forces and higher friction coefficient take place in HEA due to its outstanding strength and hardness, and high adhesion over the pure metal materials. Furthermore, the excellent comprehensive scratching properties of the bulk HEA are associated with the combined effects of multiple strengthening mechanisms, such as dislocation strengthening, deformation twinning strengthening as well as solute strengthening. This atomistic mechanism provides a fundamental understanding of plastic deformation and scratching behavior in HEA.


High-entropy alloys Deformation Indentation Scratching Molecular dynamics 



The authors would like to deeply appreciate the support from the NNSFC (11572118, 11772122 and 51871092), the Fundamental Research Funds for the Central Universities (531107051151), and the National Key Research and Development Program of China (2016YFB0700300).


  1. 1.
    Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10:817CrossRefGoogle Scholar
  2. 2.
    Zheng X, Smith W, Jackson J, Moran B, Cui H, Chen D, Spadaccini CM (2016) Multiscale metallic metamaterials. Nat Mater 15:1100CrossRefGoogle Scholar
  3. 3.
    Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO (2014) A fracture-resistant high-entropy alloy for cryogenic applications. Science 345:1153–1158CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93CrossRefGoogle Scholar
  5. 5.
    Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303CrossRefGoogle Scholar
  6. 6.
    Schuh B, Mendez-Martin F, Völker B, George EP, Clemens H, Pippan R, Hohenwarter A (2015) Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater 96:258–268CrossRefGoogle Scholar
  7. 7.
    Yeh JW (2006) Recent progress in high-entropy alloys. Ann Chim Sci Mater 31:633–648CrossRefGoogle Scholar
  8. 8.
    He JY, Liu WH, Wang H, Wu Y, Liu XJ, Nieh TG, Lu ZP (2014) Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater 62:105–113CrossRefGoogle Scholar
  9. 9.
    He JY, Wang H, Huang HL, Xu XD, Chen MW, Wu Y, Lu ZP (2016) A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater 102:187–196CrossRefGoogle Scholar
  10. 10.
    Gao X, Lu Y, Zhang B, Liang N, Wu G, Sha G, Zhao Y (2017) Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater 141:59–66CrossRefGoogle Scholar
  11. 11.
    Lu Y, Gao X, Jiang L, Chen Z, Wang T, Jie J, Zhao Y (2017) Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater 124:143–150CrossRefGoogle Scholar
  12. 12.
    Tracy CL, Park S, Rittman DR, Zinkle SJ, Bei H, Lang M, Mao WL (2017) High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun 8:15634CrossRefGoogle Scholar
  13. 13.
    Hemphill MA, Yuan T, Wang GY, Yeh JW, Tsai CW, Chuang A, Liaw PK (2012) Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater 60:5723–5734CrossRefGoogle Scholar
  14. 14.
    Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC (2016) Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534:227CrossRefGoogle Scholar
  15. 15.
    Wu JM, Lin SJ, Yeh JW, Chen SK, Huang YS, Chen HC (2006) Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261:513–519CrossRefGoogle Scholar
  16. 16.
    Yadav S, Sarkar S, Aggarwal A, Kumar A, Biswas K (2018) Wear and mechanical properties of novel (CuCrFeTiZn)100-xPbx high entropy alloy composite via mechanical alloying and spark plasma sintering. Wear 410:93–109CrossRefGoogle Scholar
  17. 17.
    Ye YX, Liu CZ, Wang H, Nieh TG (2018) Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater 147:78–89CrossRefGoogle Scholar
  18. 18.
    Zepeda-Ruiz LA, Stukowski A, Oppelstrup T, Bulatov VV (2017) Probing the limits of metal plasticity with molecular dynamics simulations. Nature 550:492CrossRefGoogle Scholar
  19. 19.
    Wu Z, Ahmad R, Yin B, Sandlöbes S, Curtin WA (2018) Mechanistic origin and prediction of enhanced ductility in magnesium alloys. Science 359:447–452CrossRefGoogle Scholar
  20. 20.
    Kao SW, Yeh JW, Chin TS (2008) Rapidly solidified structure of alloys with up to eight equal-molar elements—a simulation by molecular dynamics. J Phys Cond Matter 20:145214CrossRefGoogle Scholar
  21. 21.
    Xie L, Brault P, Thomann AL, Yang X, Zhang Y, Shang G (2016) Molecular dynamics simulation of Al–Co–Cr–Cu–Fe–Ni high entropy alloy thin film growth. Intermetallics 68:78–86CrossRefGoogle Scholar
  22. 22.
    Li J, Fang Q, Liu B, Liu Y, Liu YW (2016) Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation. RSC Adv. 6:76409–76419CrossRefGoogle Scholar
  23. 23.
    Sharma A, Balasubramanian G (2017) Dislocation dynamics in Al0.1CoCrFeNi high-entropy alloy under tensile loading. Intermetallics 91:31–34CrossRefGoogle Scholar
  24. 24.
    Fang QH, Yi M, Li J, Liu B, Huang Z (2018) Deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass during nanoindentation. Appl Sur Sci 443:122–130CrossRefGoogle Scholar
  25. 25.
    Li J, Fang QH, Liu B, Liu Y, Liu YW (2016) Atomic-scale analysis of nanoindentation behavior of high-entropy alloy. J Micro Mol Phys 1:1650001CrossRefGoogle Scholar
  26. 26.
    Wang Z, Li J, Fang QH, Liu B, Zhang LC (2017) Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations. Appl Sur Sci 416:470–481CrossRefGoogle Scholar
  27. 27.
    Li J, Fang QH, Liu B, Liu Y (2018) Transformation induced softening and plasticity in high entropy alloys. Acta Mater 147:35–41CrossRefGoogle Scholar
  28. 28.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19zbMATHCrossRefGoogle Scholar
  29. 29.
    Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18:15012CrossRefGoogle Scholar
  30. 30.
    Zhu PZ, Fang FZ (2012) Molecular dynamics simulations of nanoindentation of monocrystalline germanium. Appl Phys A 108:415–421CrossRefGoogle Scholar
  31. 31.
    Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD (2001) Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 63:224106CrossRefGoogle Scholar
  32. 32.
    Cohen AJ, Gordon RG (1975) Theory of the lattice energy, equilibrium structure, elastic constants, and pressure-induced phase transitions in alkali-halide crystals. Phys Rev B 12:3228CrossRefGoogle Scholar
  33. 33.
    Pi JH, Pan Y, Zhang H, Zhan L (2012) Microstructure and properties of AlCrFeCuNix, 0.6≤ x≤1.4, high-entropy alloys. Mater Sci Eng A 534:228–233CrossRefGoogle Scholar
  34. 34.
    Ma SG, Qiao JW, Wang ZH, Yang HJ, Zhang Y (2015) Microstructural features and tensile behaviors of the Al0.5CrCuFeNi2 high-entropy alloys by cold rolling and subsequent annealing. Mater Des 88:1057–1062CrossRefGoogle Scholar
  35. 35.
    Ma SG, Jiao ZM, Qiao JW, Yang HJ, Zhang Y, Wang ZH (2016) Strain rate effects on the dynamic mechanical properties of the AlCrCuFeNi2 high-entropy alloy. Mater Sci Eng, A 649:35–38CrossRefGoogle Scholar
  36. 36.
    Li XY, Gao HJ (2016) Mechanical metamaterials: smaller and stronger. Nat Mater 15:373–374CrossRefGoogle Scholar
  37. 37.
    Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91:4950–4963CrossRefGoogle Scholar
  38. 38.
    Zaddach AJ, Niu C, Koch CC, Irving DL (2013) Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 65:1780–1789CrossRefGoogle Scholar
  39. 39.
    Stukowski A, Albe K (2010) Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sci 18:085001CrossRefGoogle Scholar
  40. 40.
    Zhao WS, Tao NR, Guo JY, Lu QH, Lu K (2005) High density nano-scale twins in Cu induced by dynamic plastic deformation. Scripta Mater 53:745–749CrossRefGoogle Scholar
  41. 41.
    Liu S, Wei YJ (2017) The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys. Ext Mech Lett 11:84–88CrossRefGoogle Scholar
  42. 42.
    Deng Y, Tasan CC, Pradeep KG, Springer H, Kostka A, Raabe D (2015) Design of a twinning-induced plasticity high entropy alloy. Acta Mater 94:124–133CrossRefGoogle Scholar
  43. 43.
    Zhang YH, Zhuang Y, Hu A, Kai JJ, Liu CT (2017) The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scripta Mater 130:96–99CrossRefGoogle Scholar
  44. 44.
    Fu Z, Chen W, Wen H, Zhang D, Chen Z, Zheng B, Lavernia EJ (2016) Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107:59–71CrossRefGoogle Scholar
  45. 45.
    Yaakobi B, Boehly TR, Meyerhofer DD, Collins TJB, Remington BA, Allen PG, Eggert JH (2005) EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks. Phys Rev Lett 95:075501CrossRefGoogle Scholar
  46. 46.
    Olson GB, Cohen MJ (1972) A mechanism for the strain-induced nucleation of martensitic transformations. J Less Common Metals 28:107–118CrossRefGoogle Scholar
  47. 47.
    Kadau K, Germann TC, Lomdahl PS, Holian BL (2005) Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals. Phys Rev B 72:064120CrossRefGoogle Scholar
  48. 48.
    Zhang HW, Hei ZK, Liu G, Lu J, Lu K (2003) Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater 51:1871–1881CrossRefGoogle Scholar
  49. 49.
    Wang B, Urbassek HM (2013) Molecular dynamics study of the α–γ phase transition in Fe induced by shear deformation. Acta Mater 61:5979–5987CrossRefGoogle Scholar
  50. 50.
    Diao J, Gall K, Dunn ML (2003) Surface-stress-induced phase transformation in metal nanowires. Nat Mater 2:656–660CrossRefGoogle Scholar
  51. 51.
    Telford M (2004) The case for bulk metallic glass. Mater Today 7:36–43CrossRefGoogle Scholar
  52. 52.
    Greer AL, Ma E (2007) Bulk metallic glasses: at the cutting edge of metals research. MRS Bull 32:611–619CrossRefGoogle Scholar
  53. 53.
    Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Eng, R 44:45–89CrossRefGoogle Scholar
  54. 54.
    Hertz H (1896) Miscellaneous papers. Macmillan, New YorkzbMATHGoogle Scholar
  55. 55.
    Zhang JJ, Sun T, Hartmaier A, Yan YD (2012) Atomistic simulation of the influence of nanomachining-induced deformation on subsequent nanoindentation. Comp Mater Sci 59:14–21CrossRefGoogle Scholar
  56. 56.
    Zhang JJ, Sun T, Yan Y, He Y, Liang Y, Dong S (2011) Atomistic investigation of probe-based nanomachining on Cu twin boundaries. J Comp The Nano 8:2344–2349CrossRefGoogle Scholar
  57. 57.
    Qiu C, Zhu P, Fang F, Yuan D, Shen X (2014) Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Appl Sur Sci 305:101–110CrossRefGoogle Scholar
  58. 58.
    Pi J, Wang Z, He X, Bai Y, Zhen R (2016) Nanoindentation mechanical properties of glassy Cu29Zr32Ti15Al5Ni19. J Alloys Comp 657:726–732CrossRefGoogle Scholar
  59. 59.
    Zhao SF, Shao Y, Liu X, Chen N, Ding HY, Yao KF (2015) Pseudo-quinary Ti20Zr20Hf20Be20(Cu20-xNix) high entropy bulk metallic glasses with large glass forming ability. Mater Des 87:625–631CrossRefGoogle Scholar
  60. 60.
    Gong P, Jin J, Deng L, Wang S, Gu J, Yao K, Wang X (2017) Room temperature nanoindentation creep behavior of TiZrHfBeCu(Ni) high entropy bulk metallic glasses. Mater Sci Eng, A 688:174–179CrossRefGoogle Scholar
  61. 61.
    Ding HY, Shao Y, Gong P, Li JF, Yao KF (2014) A senary TiZrHfCuNiBe high entropy bulk metallic glass with large glass-forming ability. Mater Lett 125:151–153CrossRefGoogle Scholar
  62. 62.
    Wang WH (2012) The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci 57:487–656CrossRefGoogle Scholar
  63. 63.
    Rao JC, Diao HY, Ocelík V, Vainchtein D, Zhang C, Kuo C, Liaw PK (2017) Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal. Acta Mater 131:206–220CrossRefGoogle Scholar
  64. 64.
    Borkar T, Gwalani B, Choudhuri D, Mikler CV, Yannetta CJ, Chen X, Banerjee R (2016) A combinatorial assessment of AlxCrCuFeNi2 (0<x<1.5) complex concentrated alloys: microstructure, microhardness, and magnetic properties. Acta Mater 116:63–76CrossRefGoogle Scholar
  65. 65.
    Nishikawa M, Soyama H (2011) Two-step method to evaluate equibiaxial residual stress of metal surface based on micro-indentation tests. Mater Des 32:3240–3247CrossRefGoogle Scholar
  66. 66.
    Cheng JB, Liang XB, Xu BS (2014) Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings. Surf Coat Tech 240:184–190CrossRefGoogle Scholar
  67. 67.
    Wang WH (2014) High-entropy metallic glasses. JOM 66:2067–2077CrossRefGoogle Scholar
  68. 68.
    Guo S, Liu CT (2011) Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci 21:433–446CrossRefGoogle Scholar
  69. 69.
    Azumo S, Nagayama K (2006) Amorphous formation and magnetic properties of Nd–Fe–Co–Al alloys by gas flow type levitation process. Mater Trans 47:2842–2845CrossRefGoogle Scholar
  70. 70.
    Hu ZQ, Ding BZ, Zhang HF, Li DJ, Yao B, Liu HZ, Wang AM (2001) Formation of non-equilibrium alloys by high pressure melt quenching. Sci Technol Adv Mat 2:41–48CrossRefGoogle Scholar
  71. 71.
    Li J, Fang QH, Liu YW, Zhang LC (2015) Scratching of copper with rough surfaces conducted by diamond tip simulated using molecular dynamics. Int J Adv Manuf Tech 77:1057–1070CrossRefGoogle Scholar
  72. 72.
    Li J, Fang QH, Liu YW, Zhang LC (2014) A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding. Appl Surf Sci 303:331–343CrossRefGoogle Scholar
  73. 73.
    Zhang JJ, Begau C, Geng L, Hartmaier A (2015) Atomistic investigation of wear mechanisms of a copper bi-crystal. Wear 332:941–948CrossRefGoogle Scholar
  74. 74.
    Diao H, Xie X, Sun F, Dahmen KA, Liaw PK (2016) Mechanical properties of high-entropy alloys. Springer International Publishing, BerlinCrossRefGoogle Scholar
  75. 75.
    Wang Y, Yang Y, Yang H, Zhang M, Qiao J (2017) Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy. J Alloy Comp 725:365–372CrossRefGoogle Scholar
  76. 76.
    Reihanian M, Ebrahimi R, Tsuji N, Moshksar MM (2008) Analysis of the mechanical properties and deformation behavior of nanostructured commercially pure Al processed by equal channel angular pressing (ECAP). Mater Sci Eng, A 473:189–194CrossRefGoogle Scholar
  77. 77.
    Li W, Liaw PK, Gao Y (2018) Fracture resistance of high entropy alloys: a review. Intermetallics 99:69–83CrossRefGoogle Scholar
  78. 78.
    Liu Y, Ma S, Gao MC, Zhang C, Zhang T, Yang H, Qiao J (2016) Tribological properties of AlCrCuFeNi2 high-entropy alloy in different conditions. Metal Mater Trans A 47:3312–3321CrossRefGoogle Scholar
  79. 79.
    Zhang JJ, Wei YJ, Sun T, Hartmaier A, Yan YD, Li X (2012) Twin boundary spacing-dependent friction in nanotwinned copper. Phys Rev B 85:054109CrossRefGoogle Scholar
  80. 80.
    Gao Y, Urbassek HM (2016) Scratching of nanocrystalline metals: a molecular dynamics study of Fe. Appl Surf Sci 389:688–695CrossRefGoogle Scholar
  81. 81.
    Gao Y, Lu C, Huynh NN, Michal G, Zhu HT, Tieu AK (2009) Molecular dynamics simulation of effect of indenter shape on nanoscratch of Ni. Wear 267:1998–2002CrossRefGoogle Scholar
  82. 82.
    Tsai CW, Chen YL, Tsai MH, Yeh JW, Shun TT, Chen SK (2009) Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. J Alloys Compd 486:427–435CrossRefGoogle Scholar
  83. 83.
    Zhang F, Meng B, Geng Y, Zhang Y (2016) Study on the machined depth when nanoscratching on 6H-SiC using Berkovich indenter: Modelling and experimental study. Appl Sur Sci 368:449–455CrossRefGoogle Scholar
  84. 84.
    Lu K, Lu J (2004) Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater Sci Eng, A 375:38–45CrossRefGoogle Scholar
  85. 85.
    Fang TH, Li WL, Tao NR, Lu K (2011) Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331:1587–1590CrossRefGoogle Scholar
  86. 86.
    Fu Z, Chen W, Fang S, Zhang D, Xiao H, Zhu D (2013) Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J Alloys Compd 553:316–323CrossRefGoogle Scholar
  87. 87.
    Gao MC, Yeh JW, Liaw PK, Zhang Y (2016) High-entropy alloys: fundamentals and applications. Springer, BerlinCrossRefGoogle Scholar
  88. 88.
    Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Deformation twinning in nanocrystalline aluminum. Science 300:1275CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations