Advertisement

Nitrogen-Vacancy Color Centers in Diamond Fabricated by Ultrafast Laser Nanomachining

  • Changkun Shi
  • Huihui Luo
  • Zongwei XuEmail author
  • Fengzhou Fang
Chapter
Part of the Springer Tracts in Mechanical Engineering book series (STME)

Abstract

Nitrogen-vacancy (NV) color center is one kind of luminescent point defect in diamond. NV color center is a composite structure composed of substituted nitrogen atoms and adjacent carbon vacancies in diamond. It can be applied in many fields, such as super-resolution fluorescence imaging, high-sensitive detection, and quantum computing. In order to meet the requirements of NV color center’s applications, many efforts have been devoted to study the manufacturing methods of NV color center. Nowadays, femtosecond (fs) laser technology has been widely used in the field of micro/nanomachining and gradually applied to the manufacturing of diamond NV color centers. In this chapter, the mechanism and characteristics of fs laser micro/nanomachining, the basic properties, and the applications of diamond NV color centers were concisely summarized. Moreover, the ultrafast laser processing of NV color center, the fluorescence detection of NV color center, and the anti-bunching analysis method of single NV color center are introduced and discussed in detail.

Notes

Acknowledgements

The study was supported by the National Natural Science Foundation of China (No. 51575389, 51511130074), National Natural Science Foundation of China (NSFC)-German Research Foundation (DFG) International Joint Research Programme (51761135106), the Natural Science Foundation of Tianjin (15JCYBJC19400), State key laboratory of precision measuring technology and instruments (Pilt1705), and the ‘111’ project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China (Grant No. B07014).

References

  1. 1.
    Acosta V, Hemmer P (2013) Nitrogen-vacancy centers: physics and applications. MRS Bull 38:127–130Google Scholar
  2. 2.
    Köhler J et al (1993) Magnetic resonance of a single molecular spin. Nature 363(6426):242–244Google Scholar
  3. 3.
    Wrachtrup J et al (1993) Optical detection of magnetic resonance in a single molecule. Nature 363(6426):244–245Google Scholar
  4. 4.
    Gruber A (1997) Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276(5321):2012–2014Google Scholar
  5. 5.
    Balasubramanian G et al (2009) Ultralong spin coherence time in isotopically engineered diamond. Nat Mater 8(5):383–387Google Scholar
  6. 6.
    Acosta VM et al (2010) Optical properties of the nitrogen-vacancy singlet levels in diamond. Phys Rev B 82(20):2889–2898Google Scholar
  7. 7.
    Rondin L et al (2015) Magnetometry with nitrogen-vacancy defects in diamond. Cheminform 45(42):056503Google Scholar
  8. 8.
    Mcguinness LP et al (2011) Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat Nanotechnol 6(6):358–363Google Scholar
  9. 9.
    Schuster DI et al (2010) High-cooperativity coupling of electron-spin ensembles to superconducting cavities. Phys Rev Lett 105(14):140501Google Scholar
  10. 10.
    Maletinsky P et al (2012) A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat Nanotechnol 7(5):320Google Scholar
  11. 11.
    Kubanek A et al (2012) Quantum interference of single photons from two remote nitrogen-vacancy centers in diamond. In: Meeting of the APS division of atomic, molecular and optical physicsGoogle Scholar
  12. 12.
    Schell AW et al (2014) Scanning single quantum emitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states. Nano Lett 14(5):2623–2627Google Scholar
  13. 13.
    Cuche A et al (2010) “Deterministic” quantum plasmonics. Nano Lett 10(11):4566Google Scholar
  14. 14.
    Zaitsev SAM (2001) Optical Properties of Diamond. Springer, Berlin, Heidelberg, pp 5090–5097Google Scholar
  15. 15.
    Koizumi S, Nebel CE, Nesladek M (2008) Physics and applications of CVD diamond. Wiley, WeinheimGoogle Scholar
  16. 16.
    Jelezko F, Wrachtrup J (2010) Single defect centres in diamond: a review. Phys Status Solidi 203(13):3207–3225Google Scholar
  17. 17.
    Mildren, Assoc. Rich P, Rabeau AJR (2013) Optical quality diamond grown by chemical vapor deposition. Optical engineering of diamond. Wiley‐VCH Verlag GmbH & Co. KGaAGoogle Scholar
  18. 18.
    Suter D, Jelezko F (2017) Single-spin magnetic resonance in the nitrogen-vacancy center of diamond. Prog Nucl Magn Reson Spectrosc 98–99:50Google Scholar
  19. 19.
    Davies G, Hamer MF (1976) Optical studies of the 1.945 eV vibronic band in diamond. Proc R Soc Math Phys Eng Sci 348(1653):285–298Google Scholar
  20. 20.
    Doherty MW et al (2013) The nitrogen-vacancy colour centre in diamond. Phys Rep 528(1):1–45Google Scholar
  21. 21.
    Wang J (2016) Preparation and spin coherence of NV centers in diamond and temperature detection application. University of Science Technology of ChinaGoogle Scholar
  22. 22.
    Liu Y (2016) Generation of single photons based on color centers in diamond and investigation on its fluorescence dynamics. East China Normal UniversityGoogle Scholar
  23. 23.
    Balasubramanian G et al (2014) Nitrogen-vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing. Curr Opin Chem Biol 20(20):69–77Google Scholar
  24. 24.
    Orwa JO et al (2011) Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing. J Appl Phys 109(8):3207Google Scholar
  25. 25.
    Plakhotnik T, Aman H (2017) NV-centers in nanodiamonds: how good they are. Diam Relat Mater 82:87–95Google Scholar
  26. 26.
    Berthel M et al (2016) Photophysics of single nitrogen-vacancy centers in diamond nanocrystals. Phys Rev B 91(3):035308Google Scholar
  27. 27.
    Felton S et al (2008) Electron paramagnetic resonance studies of the neutral nitrogen vacancy in diamond. Phys Rev B: Condens Matter 77(77):439–446Google Scholar
  28. 28.
    Lenef A, Rand SC (1996) Electronic structure of the N-V center in diamond: theory. Phys Rev B: Condens Matter 53(56):13427–13440Google Scholar
  29. 29.
    Manson NB, Harrison JP, Sellars MJ (2006) Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys Rev B Cond matter 74(10):104303Google Scholar
  30. 30.
    Fuchs GD et al (2011) A quantum memory intrinsic to single nitrogen–vacancy centres in diamond. Nat Phys 7(10):789–793Google Scholar
  31. 31.
    Kong X (2015) Magnetic resonance towards single nuclear spin sensitivity based on single solidstate spin in diamond. University of Science and Technology of ChinaGoogle Scholar
  32. 32.
    Dumeige Y et al (2014) Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity. Phys Rev B 87(15):155202Google Scholar
  33. 33.
    Nizovtsev AP et al (2001) Modeling fluorescence of single nitrogen–vacancy defect centers in diamond. Phys B Phys Condens Matter 308(308):608–611Google Scholar
  34. 34.
    Lesik M (2015) Engineering of NV color centers in diamond for their applications in quantum information and magnetometryGoogle Scholar
  35. 35.
    Gisin N et al (2001) Quantum cryptography. Rev Mod Phys 74(1):145–195zbMATHGoogle Scholar
  36. 36.
    Groeblacher S et al (2005) Experimental quantum cryptography with qutrits. New J Phys 8(5):75Google Scholar
  37. 37.
    Dutt MVG et al (2007) Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316(5829):1312–1316Google Scholar
  38. 38.
    Bernien H et al (2012) Heralded entanglement between solid-state qubits separated by 3 meters. In: APS division of atomic, molecular and optical physics meetingGoogle Scholar
  39. 39.
    Tsukanov AV (2013) Quantum memory based on ensemble states of NV centers in diamond. Russ Microlectron 42(3):127–147Google Scholar
  40. 40.
    Rivas A, Huelga SF, Plenio MB (2010) Entanglement and non-markovianity of quantum evolutions. Phys Rev Lett 105(5):050403Google Scholar
  41. 41.
    Abe E, Sasaki K (2018) Tutorial: magnetic resonance with nitrogen-vacancy centers in diamond—microwave engineering, materials science, and magnetometry. J Appl Phys 123(16):161101Google Scholar
  42. 42.
    Maze JR et al (2008) Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455(7213):644–647Google Scholar
  43. 43.
    Dolde F et al (2011) Electric-field sensing using single diamond spins. Nat Phys 7(6):459–463Google Scholar
  44. 44.
    Glenn DR et al (2018) High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 555(7696):351Google Scholar
  45. 45.
    Grazioso F et al (2013) Measurement of the full stress tensor in a crystal using photoluminescence from point defects: the example of nitrogen vacancy centers in diamond. Appl Phys Lett 103(10):133Google Scholar
  46. 46.
    Kucsko G et al (2013) Nanometer scale quantum thermometry in a living cell. Physics 500(7460):54–58Google Scholar
  47. 47.
    Ajoy A et al (2015) Atomic-scale nuclear spin imaging using quantum-assisted sensors in diamond. Phys. Rev X 5(1):011001Google Scholar
  48. 48.
    Fu CC et al (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci U S A 104(3):727–732Google Scholar
  49. 49.
    Neugart Felix et al (2007) Dynamics of diamond nanoparticles in solution and cells. Nano Lett 7(12):3588–3591Google Scholar
  50. 50.
    Fang CY et al (2011) The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker. Small 7(23):3363–3370Google Scholar
  51. 51.
    Mohan N et al (2010) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 10(9):3692–3699Google Scholar
  52. 52.
    Simpson DA et al (2014) In vivo imaging and tracking of individual nanodiamonds in drosophila melanogaster embryos. Biomed Opt Express 5(4):1250–1261Google Scholar
  53. 53.
    Kuo Y et al (2013) Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomaterials 34(33):8352–8360Google Scholar
  54. 54.
    Wu TJ et al (2013) Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat Nanotechnol 8(9):682–689Google Scholar
  55. 55.
    Han KY et al (2009) Optimizing fluorophores for super-resolution fluorescence STED microscopy. Biophys J 96(3):637a–637aMathSciNetGoogle Scholar
  56. 56.
    Rittweger E et al (2015) STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics 3(3):144–147Google Scholar
  57. 57.
    Wildanger D et al (2012) Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization. Adv Mater 24(44): OP309–OP313Google Scholar
  58. 58.
    Mazur E (2008) Femtosecond laser micromachining in transparent materials. Nat Photonics 2(4):219–225Google Scholar
  59. 59.
    Schaffer CB, Brodeur A, Mazur E, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Measur Sci Technol 12(11):1784–1794Google Scholar
  60. 60.
    Ams M et al (2008) Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics. IEEE J Sel Top Quant Electron 14(5):1370–1381Google Scholar
  61. 61.
    Mao SS et al (2004) Dynamics of femtosecond laser interactions with dielectrics. Appl Phys A 79(7):1695–1709Google Scholar
  62. 62.
    Tan D et al (2016) Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog Mater Sci 76(1):154–228Google Scholar
  63. 63.
    Qiu J, Miura K, Hirao K (2008) Femtosecond laser-induced microfeatures in glasses and their applications. J Non-Cryst Solids 354(12–13):1100–1111Google Scholar
  64. 64.
    Mysyrowicz A et al (2003) Femtosecond laser irradiation stress induced in pure silica. Opt Express 11(9):1070–1079Google Scholar
  65. 65.
    Joglekar AP et al (2004) Optics at critical intensity: applications to nanomorphing. Proc Natl Acad Sci U S A 101(16):5856–5861Google Scholar
  66. 66.
    Macandrew JA (1988) The programme. Optica Acta Int J Opt 303–316Google Scholar
  67. 67.
    Kane DJ, Trebino R (1993) Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating. J Opt Soc Am A 10(5):1101–1111Google Scholar
  68. 68.
    Trebino R et al (1997) Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev Sci Instrum 68(9):3277–3295Google Scholar
  69. 69.
    Meijer J (2004) Laser beam machining (LBM), state of the art and new opportunities. J Mater Process Technol 149(1):2–17Google Scholar
  70. 70.
    Küper S, Stuke M (1988) Ablation of uv-transparent materials with femtosecond UV excimer laser pulses. MRS Proc 129(1–4):475–480Google Scholar
  71. 71.
    Dumeige Y et al (2004) Photo-induced creation of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination. J Lumin 109(2):61–67Google Scholar
  72. 72.
    Wu B et al (2013) Fabrication of nitrogen vacancy color centers by femtosecond pulse laser illumination. Opt Express 21(10):12843–12848Google Scholar
  73. 73.
    Chen YC et al (2016) Laser writing of coherent colour centres in diamond. Nat Photonics 11:77Google Scholar
  74. 74.
    Kononenko VV et al (2017) Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique. Appl Phys Lett 111(8):081101Google Scholar
  75. 75.
    Sotillo B et al (2017) Visible to infrared diamond photonics enabled by focused femtosecond laser pulses. Micromachines 8(2):60Google Scholar
  76. 76.
    Kasparian J, Sauerbrey R, Chin SL (2000) The critical laser intensity of self-guided light filaments in air. Appl Phys B 71(6):877–879Google Scholar
  77. 77.
    Tzortzakis S et al (2002) Femtosecond laser-guided electric discharge in air. In: Conference digest: 2000 international quantum electronics conferenceGoogle Scholar
  78. 78.
    Kasparian J et al (2003) White-light filaments for atmospheric analysis. Science 301(5629):61–64Google Scholar
  79. 79.
    Sprangle P, Peñano JR, Hafizi B (2002) Propagation of intense short laser pulses in the atmosphere. Phys Rev E Stat Nonlinear Soft Matter Phys 66(2): 046418Google Scholar
  80. 80.
    Couairon A, Mysyrowicz A (2007) Femtosecond filamentation in transparent media. Phys Rep 441(2):47–189Google Scholar
  81. 81.
    York AG et al (2008) Direct acceleration of electrons in a corrugated plasma waveguide. Phys Rev Lett 100(19):195001Google Scholar
  82. 82.
    Shi L et al (2011) Generation of high-density electrons based on plasma grating induced Bragg diffraction in air. Phys Rev Lett 107(9):095004Google Scholar
  83. 83.
    Lagomarsino S et al (2016) Photoionization of monocrystalline CVD diamond irradiated with ultrashort intense laser pulse. Phys Rev B. 93(8):085128Google Scholar
  84. 84.
    Sun B, Salter PS, Booth MJ (2014) High conductivity micro-wires in diamond following arbitrary paths. Appl Phys Lett 105(23):397Google Scholar
  85. 85.
    Yamamoto T et al (2013) Extending spin coherence times of diamond qubits by high temperature annealing. Phys Rev B 88(7):4049–4056Google Scholar
  86. 86.
    Chu Y et al (2014) Coherent optical transitions in implanted nitrogen vacancy centers. Nano Lett 14(4):1982–1986Google Scholar
  87. 87.
    Cuche A et al (2009) Near-field optical microscopy with a nanodiamond-based single photon tip. Opt Express 17(22):19969–19980Google Scholar
  88. 88.
    Drezet A et al (2015) Near-field microscopy with a scanning nitrogen-vacancy color center in a diamond nanocrystal: a brief review. Micron 70:55–63Google Scholar
  89. 89.
    Patel RN et al (2015) Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber. Light Sci Appl 5(2):e16032Google Scholar
  90. 90.
    Gaebel T et al (2004) Stable single-photon source in the near infrared. New J of Phys 6(1):98Google Scholar
  91. 91.
    Kurtsiefer C et al (2002) Stable solid-state source of single photons. Phys Rev Lett 85(2):290–293Google Scholar
  92. 92.
    Englund D et al (2010) Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett 10(10):3922Google Scholar
  93. 93.
    Faraon A et al (2011) Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nat Photonics 5(5):301–305Google Scholar
  94. 94.
    Riedrichmöller J et al (2011) One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat Nanotechnol 7(1):69Google Scholar
  95. 95.
    Mclellan CA et al (2015) Patterned formation of highly coherent nitrogen-vacancy centers using a focused electron irradiation technique. Nano Lett 16(4):2450–2454Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Changkun Shi
    • 1
  • Huihui Luo
    • 1
  • Zongwei Xu
    • 1
    Email author
  • Fengzhou Fang
    • 1
  1. 1.State Key Laboratory of Precision Measuring Technology & InstrumentsCentre of MicroNano Manufacturing Technology, Tianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations