Advertisement

Physical Metallurgical Principles of Titanium Microalloyed Steel—Dissolution and Precipitation of Titanium-Bearing Secondary Phases

  • Qilong YongEmail author
  • Xinjun Sun
  • Zhaodong Li
  • Zhenqiang Wang
  • Ke Zhang
Chapter

Abstract

The precipitation of microalloying elements is one of the most important issues in microalloyed steels. It is well recognized that controlling the precipitation process of microallying elements in steels is an effective means to significantly improve the strength of steel material due to precipitation strengthening and grain refinement by controlling the austenite grains coarsening during reheating process and recrystallization process. Moreover, controlling the precipitation behavior of secondary phases in steel, leading to an accurate control of volume fraction, shape, size and distribution of precipitates, could effectively improve the microstructure and mechanical properties, which is a significant issue for microalloyed steel in the field of theory research and production practice.

Keywords

Titanium microalloyed steel Dissolution Precipitation Ostwald ripening 

References

  1. 1.
    Mao X P, Sun X J, Kang Y L, Lin Z Y. Physical metallurgy for the titanium microalloyed strip produced by thin slab casting and rolling process [J]. Acta Metallurgica Sinica, 2006, 42(10), 1091–1095.Google Scholar
  2. 2.
    Wang M L, Cheng G Q, Qiu S T, Zhao P, Gan Y. Behavior of precipitation containing titanium during solidification [J]. Journal of Iron and Steel Research, 2007, 19(5), 44–53.Google Scholar
  3. 3.
    Hansen M, Anderko K. Constitution of Binary Alloys [M]. New York: McGraw-Hill, 1958.Google Scholar
  4. 4.
    Yong Q L. Secondary Phase in Steel Materials [M]. Beijing: Metallurgy Industry Press, 2006.Google Scholar
  5. 5.
    Ye D L, Hu J H, Manual of Thermodynamic Data for Inorganic Substance [M]. Beijing: Metallurgy Industry Press, 2002.Google Scholar
  6. 6.
    Narita K. Physical Chemistry of the Groups IVa(Ti,Zr), Va(V,Nb,Ta) and the Rare Earth Elements in Steel [J]. Trans ISIJ, 1975, 15: 145–152.Google Scholar
  7. 7.
    Irvine K J, Pickering F B, Gladman T. Grain Refined C-Mn Steels [J]. JISI, 1967, 205: 161–182.Google Scholar
  8. 8.
    Chino H, Wada H. Jawata Tech Rep., 1965, 251: 5817.Google Scholar
  9. 9.
    Williams R, Harries W. Met Soc., 1974: 152.Google Scholar
  10. 10.
    Hillert M, Jonsson S. An Assessment of the Al-Fe-N System [J]. Metall Trans., 1992, 23A: 3141–3149.Google Scholar
  11. 11.
    Akamatsu S, Hasebe M, Senuma T, Matsumura Y, Akisue O. Thermodynamic Calculation of solute Carbon and Nitrogen in Nb and Ti Added Extra-low Carbon Steels [J]. ISIJ Inter., 1994, 34: 9–16.CrossRefGoogle Scholar
  12. 12.
    Matsuda S, Okumura N. Effect of Distribution of TiN Precipitate Particle on the Austenite Grain Size of Low Carbon Low Alloy Steels [J]. Trans ISIJ, 1978, 18: 198–202.Google Scholar
  13. 13.
    Gurevic J G. Gernaya Metallurgija, 1960(6): 59.Google Scholar
  14. 14.
    Adachi A, Mizukawa K, Kanda K. Tetsu-to-Hagane, 1962, 48: 1436.Google Scholar
  15. 15.
    Kunze J. Solubility product of titanium nitride in gamma-iron [J]. Met. Sci., 1982, 16: 217–218.Google Scholar
  16. 16.
    [16]Wada H, Pehlke R D. Nitrogen Solubility and Nitride Formation in Austenitic Fe-Ti Alloys [J]. Metall. Trans., 1985, 16B: 815–822.CrossRefGoogle Scholar
  17. 17.
    Turkdogan E T. Causes and effects of nitride and carbonitride precipitation during continuous casting [J]. Iron Steelmaker, 1989, 16: 61–75.Google Scholar
  18. 18.
    Inoue K, Ohnuma I, Ohtani H, Ishida K, Nishizawa T. Solubility Product of TiN in Austenite [J]. ISIJ Inter. 1998, 38: 991–997.CrossRefGoogle Scholar
  19. 19.
    Tailor K A. Solubility Products for Titanium-, Vanadium- and Niobium-Carbides in Ferrite [J]. Script Metall. Mater., 1995, 32: 7–12.Google Scholar
  20. 20.
    Akamatsu S, Hasebe M, Senuma T, Matsumura Y, Akisue O. Thermodynamic Calculation of solute Carbon and Nitrogen in Nb and Ti Added Extra-low Carbon Steels [J]. ISIJ Inter., 1994, 34: 9–16.CrossRefGoogle Scholar
  21. 21.
    Chen J X, Manual of Figures and Tables for Steelmaking [M]. Beijing: Metallurgy Industry Press, 1984.Google Scholar
  22. 22.
    Liu W J, Yue S, Jonas J J. Characterization of Ti Carbosulfide Precipitation in Ti Microalloyed Steels [J]. Metall Trans., 1989, 20A: 1907–1915.CrossRefGoogle Scholar
  23. 23.
    Liu W J, Jonas J J, Bouchard D. Gibbs Energies of Formation of TiS and Ti4C2S2 in austenite [J]. ISIJ Inter., 1990, 30: 985–990.Google Scholar
  24. 24.
    Swisher J H. Sulphur Solubility and Internal Sulfidation of Iron-Titanium Alloys [J]. Trans. Metall. Soc. AIME, 1968, 242: 2433.Google Scholar
  25. 25.
    Yoshinaga N, Ushioda K, Akamatsu S, Akisue O. Precipitation Behavior of Sulfides in Ti-added Ultra Low-carbon Steels in austenite [J]. ISIJ Inter., 1994, 34:24–32.CrossRefGoogle Scholar
  26. 26.
    Yang X, Vanderschueren D, Dilewijns J, Standaert C, Houbaert Y. Solubility Products of Titanium Sulphide and Carbosulfide in Ultra-low Carbon Steels [J]. ISIJ Inter., 1996, 36: 1286–1294.Google Scholar
  27. 27.
    Copreaux J, Gaye H, Henry J. Relation Précipitation-Propriétés Dans Les Aciers Sans Interisticiels Recuits en Continu [R]. ECSC Report, EUR17806 FR, 1997.Google Scholar
  28. 28.
    Mitsui H, Oikawa K, Onuma I. Phase Stability of TiS and Ti4C2S2 in Steel [J]. CAMP-ISIJ, 2004, 17: 1275.Google Scholar
  29. 29.
    Iorio L E, Garrison W M. Solubility of Titanium Carbosulfide in Austenite [J]. ISIJ Inter., 2002, 42: 545–550.Google Scholar
  30. 30.
    Yamashita T, Okuda K, Yasuhara E. Thermodynamic Analysis of Precipitation Behaviors of Ti, Mn Sulphide in Hot-rolled Steel Sheets [J]. Tetsu-to-Hagane, 2007, 93: 538–543.Google Scholar
  31. 31.
    Mizui N, Takayama T, Sekine K. Effect of Mn on Solubility of Ti-sulfide and Ti-carbosulfide in Ultra-low C Steels [J]. ISIJ Inter., 2008, 48: 845–850.CrossRefGoogle Scholar
  32. 32.
    Moll S H, Ogilvie R E. Trans. Metall. Soc. AIME, 1959, 215: 613–618.Google Scholar
  33. 33.
    Lai D Y F, Borg J. USAEC Rept. UCRL 50314, 1967.Google Scholar
  34. 34.
    Dyment F, Libanati C M. Self-diffusion of Ti, Zr, and Hf in their HCP phases, and diffusion of in HCP Zr [J]. Mater. Sci., 1968, 3: 349–359.Google Scholar
  35. 35.
    Walsoe de Reca N E, Libanati C M. Acta Met., 1968, 16: 1297.Google Scholar
  36. 36.
    Kulkarni S R, Merlini M, Phatak N, Saxena S K, Artioli G, Amini S, Barsoum M W. Thermal expansion and stability of Ti2SC in air and inert atmospheres [J]. Alloys Compounds, 2009, 463(1–2): 395–400.CrossRefGoogle Scholar
  37. 37.
    Davenport A T, Brossard L C, Miner R E. Metals, 1975, 27(6): 21.Google Scholar
  38. 38.
    Baker R G, Nutting J. ISI Special Report, No. 64, London: ISI, 1959: 1.Google Scholar
  39. 39.
    Zener C. quoted by Smith C S, Grains, Phases, and Interfaces: An Interpretation of Microstructure [J]. Trans AIME, 1948, 175:47.Google Scholar
  40. 40.
    Cahn R W. Physical Metallurgy [M]. Netherlands: North-Holland, 1970.Google Scholar
  41. 41.
    Yong Q. Theory of Nucleation on Dislocations [J]. Chin J Met. Sci. Tech., 1990, 6: 239–243.Google Scholar
  42. 42.
    Liu W J, Jonas J J. Ti(C,N) Precitated in Microalloyed Austenite during Stress Relaxation [J]. Met. Trans. A., 1988, 19A: 1415–1424.Google Scholar
  43. 43.
    Yong Q L, Ma M T, Wu B R, Physical and Mechanical Metallurgy of Microalloyed Steel [M]. Beijing: China Machine Press, 1989.Google Scholar
  44. 44.
    Akben M G, Weiss I, Jonas J J. Dynamic precipitation and solute hardening in a V microalloyed steel and two Nb steels containing high levels of Mn [J]. Acta Metall., 1981, 29(4): 111–121.CrossRefGoogle Scholar
  45. 45.
    Akben M G, Chandra T, Plassiard P, et al. Dynamic precipitation and solute hardening in a titanium microalloyed steel containing three levels of manganese [J]. Acta Metall., 1984, 32(4):591–601.CrossRefGoogle Scholar
  46. 46.
    Dong J X, Siciliano J F, Jonas J J, et al. Effect of silicon on the kinetics of Nb(CN) precipitation during the hot working of Nb-bearing Steels [J]. ISIJ Int., 2000, 40: 613–618.Google Scholar
  47. 47.
    Irvine K J, Pickering F B, Gladman T. Grain Refined C-Mn Steels [J]. JISI, 1967, 205: 161–182.Google Scholar
  48. 48.
    Zurob H S, Zhu G, Subramanian S V, Purdy G R, Hutchinson C R, Brechet. Y. Analysis of the effect of Mn on the Recrystallization Kinetics of High Nb steel: An example of physical-based alloy design [J]. ISIJ Int., 2005, 45(5): 713–722.CrossRefGoogle Scholar
  49. 49.
    Wang C J, Yong Q L, Sun X J, Mao X P, Li Z D, Yong X, Effect of Ti and Mn contents on the precipitate characteristics and strengthening mechanism in Ti microalloyed steels produced by CSP [J]. Acta Metall., 2011, 47(12), 1541–1549.Google Scholar
  50. 50.
    Liu W J, Jonas J J. A Stress Relaxation Method for Following Carbonitride Precipitation in Austenite at Hot Working Temperatures [J]. Metall. Trans. A, 1988, 19A: 1403–1413.CrossRefGoogle Scholar
  51. 51.
    Watanabe H, Smith Y E, Pehlke R D. Precipitation kinetics of niobium carbonitride in austenite of high-strength low-alloy steels. The Hot deformation of austenite [M]. New York: TMS-AIME, 1977: 140–168.Google Scholar
  52. 52.
    Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2012, 60: 208–217.Google Scholar
  53. 53.
    Funakawa Y, Shiozaki T, Tomita K, et al. Development of High Strength Hot-rolled Sheet Steel Consisting of Ferrite and Nanometer-sized Carbides [J]. ISIJ Int., 2004, 44: 1945–1951.CrossRefGoogle Scholar
  54. 54.
    Yen H W, Huang C Y, Yang J R. Characterization of interphase-precipitated nanometer-sized carbides in a Ti-Mo-bearing steel [J]. Scripta Mater., 2009, 61: 616–619.Google Scholar
  55. 55.
    Seto K, Funakawa Y, Kaneko S. Hot Rolled High Strength Steels for Suspension and Chassis Parts “NANOHITEN” and “BHT® Steel” [J]. JFE Technical Report, 2007, 10:19–25.Google Scholar
  56. 56.
    Zhou Y, Materials Analysis Method [M]. Beijing: China Machine Press, 2011.Google Scholar
  57. 57.
    Pavlina E J, Speer J G, Van T C J. Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron [J]. Scripta Mater., 2012, 66: 243–246.CrossRefGoogle Scholar
  58. 58.
    Matsuda S, Okumura N. Effect of Distribution of TiN Precipitate Particle on the Austenite Grain Size of Low Carbon Low Alloy Steels [J]. Trans ISIJ, 1978, 18: 198–202.Google Scholar
  59. 59.
    Akben M G, Bacroix B, Jonas J J. Effect of Vanadium and Molybdenum Addition on High Temperature Recovery, Recrystallization and Precipitation Behavior of Niobium-based Microalloyed steels [J]. Acta Mater., 1983, 31: 161–174.CrossRefGoogle Scholar
  60. 60.
    Lee W B, Hong S G, Park C G, et al. Influence of Mo on Precipitation Hardening in hot Rolled HSLA Steels containing Nb [J]. Scripta Mater., 2000, 43: 319–324.CrossRefGoogle Scholar
  61. 61.
    Lee W B, Hong S G, Park C G, et al. Carbide Precipitation and High-Temperature Strength of Hot-rolled High-Strength, Low-Alloy Steels Containing Nb and Mo [J]. Metall Mater Trans A, 2002, 33A: 1689–1698.CrossRefGoogle Scholar
  62. 62.
    Pereda B, Fernadez A I, Lopez B, Rodriguez.ibabe J M. Effect of Mo on Dynamic Recrystallization Behavior of Nb-Mo Microalloyed Steels [J]. ISIJ Int., 2007, 47(6): 860–868.CrossRefGoogle Scholar
  63. 63.
    Lifshitz I M, Slyozov V V. The Kinetics of Precipitation from Supersaturated Solid Solutiions [J]. J. Phys. Chem. Solids, 1961, 19: 35–50.Google Scholar
  64. 64.
    Yong Q L. Ostwald ripening of second-phase particles in dilute solution-I. Universal differential equation [M]. Journal of Iron and Steel Research, 1991, 3(4), 51–60.Google Scholar
  65. 65.
    Yong Q L. Ostwald ripening of second-phase particles in dilute solution-I. Analytic solution [M]. Journal of Iron and Steel Research, 1992, 4(1), 59–66.Google Scholar

Copyright information

© Metallurgical Industry Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Qilong Yong
    • 1
    Email author
  • Xinjun Sun
    • 1
  • Zhaodong Li
    • 1
  • Zhenqiang Wang
    • 2
  • Ke Zhang
    • 3
  1. 1.Central Iron & Steel Research InstituteBeijingChina
  2. 2.Harbin Engineering UniversityHarbinChina
  3. 3.Anhui University of TechnologyMa’anshanChina

Personalised recommendations