Physical Metallurgical Principles of Titanium Microalloyed Steel—Dissolution and Precipitation of Titanium-Bearing Secondary Phases
Abstract
The precipitation of microalloying elements is one of the most important issues in microalloyed steels. It is well recognized that controlling the precipitation process of microallying elements in steels is an effective means to significantly improve the strength of steel material due to precipitation strengthening and grain refinement by controlling the austenite grains coarsening during reheating process and recrystallization process. Moreover, controlling the precipitation behavior of secondary phases in steel, leading to an accurate control of volume fraction, shape, size and distribution of precipitates, could effectively improve the microstructure and mechanical properties, which is a significant issue for microalloyed steel in the field of theory research and production practice.
Keywords
Titanium microalloyed steel Dissolution Precipitation Ostwald ripeningReferences
- 1.Mao X P, Sun X J, Kang Y L, Lin Z Y. Physical metallurgy for the titanium microalloyed strip produced by thin slab casting and rolling process [J]. Acta Metallurgica Sinica, 2006, 42(10), 1091–1095.Google Scholar
- 2.Wang M L, Cheng G Q, Qiu S T, Zhao P, Gan Y. Behavior of precipitation containing titanium during solidification [J]. Journal of Iron and Steel Research, 2007, 19(5), 44–53.Google Scholar
- 3.Hansen M, Anderko K. Constitution of Binary Alloys [M]. New York: McGraw-Hill, 1958.Google Scholar
- 4.Yong Q L. Secondary Phase in Steel Materials [M]. Beijing: Metallurgy Industry Press, 2006.Google Scholar
- 5.Ye D L, Hu J H, Manual of Thermodynamic Data for Inorganic Substance [M]. Beijing: Metallurgy Industry Press, 2002.Google Scholar
- 6.Narita K. Physical Chemistry of the Groups IVa(Ti,Zr), Va(V,Nb,Ta) and the Rare Earth Elements in Steel [J]. Trans ISIJ, 1975, 15: 145–152.Google Scholar
- 7.Irvine K J, Pickering F B, Gladman T. Grain Refined C-Mn Steels [J]. JISI, 1967, 205: 161–182.Google Scholar
- 8.Chino H, Wada H. Jawata Tech Rep., 1965, 251: 5817.Google Scholar
- 9.Williams R, Harries W. Met Soc., 1974: 152.Google Scholar
- 10.Hillert M, Jonsson S. An Assessment of the Al-Fe-N System [J]. Metall Trans., 1992, 23A: 3141–3149.Google Scholar
- 11.Akamatsu S, Hasebe M, Senuma T, Matsumura Y, Akisue O. Thermodynamic Calculation of solute Carbon and Nitrogen in Nb and Ti Added Extra-low Carbon Steels [J]. ISIJ Inter., 1994, 34: 9–16.CrossRefGoogle Scholar
- 12.Matsuda S, Okumura N. Effect of Distribution of TiN Precipitate Particle on the Austenite Grain Size of Low Carbon Low Alloy Steels [J]. Trans ISIJ, 1978, 18: 198–202.Google Scholar
- 13.Gurevic J G. Gernaya Metallurgija, 1960(6): 59.Google Scholar
- 14.Adachi A, Mizukawa K, Kanda K. Tetsu-to-Hagane, 1962, 48: 1436.Google Scholar
- 15.Kunze J. Solubility product of titanium nitride in gamma-iron [J]. Met. Sci., 1982, 16: 217–218.Google Scholar
- 16.[16]Wada H, Pehlke R D. Nitrogen Solubility and Nitride Formation in Austenitic Fe-Ti Alloys [J]. Metall. Trans., 1985, 16B: 815–822.CrossRefGoogle Scholar
- 17.Turkdogan E T. Causes and effects of nitride and carbonitride precipitation during continuous casting [J]. Iron Steelmaker, 1989, 16: 61–75.Google Scholar
- 18.Inoue K, Ohnuma I, Ohtani H, Ishida K, Nishizawa T. Solubility Product of TiN in Austenite [J]. ISIJ Inter. 1998, 38: 991–997.CrossRefGoogle Scholar
- 19.Tailor K A. Solubility Products for Titanium-, Vanadium- and Niobium-Carbides in Ferrite [J]. Script Metall. Mater., 1995, 32: 7–12.Google Scholar
- 20.Akamatsu S, Hasebe M, Senuma T, Matsumura Y, Akisue O. Thermodynamic Calculation of solute Carbon and Nitrogen in Nb and Ti Added Extra-low Carbon Steels [J]. ISIJ Inter., 1994, 34: 9–16.CrossRefGoogle Scholar
- 21.Chen J X, Manual of Figures and Tables for Steelmaking [M]. Beijing: Metallurgy Industry Press, 1984.Google Scholar
- 22.Liu W J, Yue S, Jonas J J. Characterization of Ti Carbosulfide Precipitation in Ti Microalloyed Steels [J]. Metall Trans., 1989, 20A: 1907–1915.CrossRefGoogle Scholar
- 23.Liu W J, Jonas J J, Bouchard D. Gibbs Energies of Formation of TiS and Ti4C2S2 in austenite [J]. ISIJ Inter., 1990, 30: 985–990.Google Scholar
- 24.Swisher J H. Sulphur Solubility and Internal Sulfidation of Iron-Titanium Alloys [J]. Trans. Metall. Soc. AIME, 1968, 242: 2433.Google Scholar
- 25.Yoshinaga N, Ushioda K, Akamatsu S, Akisue O. Precipitation Behavior of Sulfides in Ti-added Ultra Low-carbon Steels in austenite [J]. ISIJ Inter., 1994, 34:24–32.CrossRefGoogle Scholar
- 26.Yang X, Vanderschueren D, Dilewijns J, Standaert C, Houbaert Y. Solubility Products of Titanium Sulphide and Carbosulfide in Ultra-low Carbon Steels [J]. ISIJ Inter., 1996, 36: 1286–1294.Google Scholar
- 27.Copreaux J, Gaye H, Henry J. Relation Précipitation-Propriétés Dans Les Aciers Sans Interisticiels Recuits en Continu [R]. ECSC Report, EUR17806 FR, 1997.Google Scholar
- 28.Mitsui H, Oikawa K, Onuma I. Phase Stability of TiS and Ti4C2S2 in Steel [J]. CAMP-ISIJ, 2004, 17: 1275.Google Scholar
- 29.Iorio L E, Garrison W M. Solubility of Titanium Carbosulfide in Austenite [J]. ISIJ Inter., 2002, 42: 545–550.Google Scholar
- 30.Yamashita T, Okuda K, Yasuhara E. Thermodynamic Analysis of Precipitation Behaviors of Ti, Mn Sulphide in Hot-rolled Steel Sheets [J]. Tetsu-to-Hagane, 2007, 93: 538–543.Google Scholar
- 31.Mizui N, Takayama T, Sekine K. Effect of Mn on Solubility of Ti-sulfide and Ti-carbosulfide in Ultra-low C Steels [J]. ISIJ Inter., 2008, 48: 845–850.CrossRefGoogle Scholar
- 32.Moll S H, Ogilvie R E. Trans. Metall. Soc. AIME, 1959, 215: 613–618.Google Scholar
- 33.Lai D Y F, Borg J. USAEC Rept. UCRL 50314, 1967.Google Scholar
- 34.Dyment F, Libanati C M. Self-diffusion of Ti, Zr, and Hf in their HCP phases, and diffusion of in HCP Zr [J]. Mater. Sci., 1968, 3: 349–359.Google Scholar
- 35.Walsoe de Reca N E, Libanati C M. Acta Met., 1968, 16: 1297.Google Scholar
- 36.Kulkarni S R, Merlini M, Phatak N, Saxena S K, Artioli G, Amini S, Barsoum M W. Thermal expansion and stability of Ti2SC in air and inert atmospheres [J]. Alloys Compounds, 2009, 463(1–2): 395–400.CrossRefGoogle Scholar
- 37.Davenport A T, Brossard L C, Miner R E. Metals, 1975, 27(6): 21.Google Scholar
- 38.Baker R G, Nutting J. ISI Special Report, No. 64, London: ISI, 1959: 1.Google Scholar
- 39.Zener C. quoted by Smith C S, Grains, Phases, and Interfaces: An Interpretation of Microstructure [J]. Trans AIME, 1948, 175:47.Google Scholar
- 40.Cahn R W. Physical Metallurgy [M]. Netherlands: North-Holland, 1970.Google Scholar
- 41.Yong Q. Theory of Nucleation on Dislocations [J]. Chin J Met. Sci. Tech., 1990, 6: 239–243.Google Scholar
- 42.Liu W J, Jonas J J. Ti(C,N) Precitated in Microalloyed Austenite during Stress Relaxation [J]. Met. Trans. A., 1988, 19A: 1415–1424.Google Scholar
- 43.Yong Q L, Ma M T, Wu B R, Physical and Mechanical Metallurgy of Microalloyed Steel [M]. Beijing: China Machine Press, 1989.Google Scholar
- 44.Akben M G, Weiss I, Jonas J J. Dynamic precipitation and solute hardening in a V microalloyed steel and two Nb steels containing high levels of Mn [J]. Acta Metall., 1981, 29(4): 111–121.CrossRefGoogle Scholar
- 45.Akben M G, Chandra T, Plassiard P, et al. Dynamic precipitation and solute hardening in a titanium microalloyed steel containing three levels of manganese [J]. Acta Metall., 1984, 32(4):591–601.CrossRefGoogle Scholar
- 46.Dong J X, Siciliano J F, Jonas J J, et al. Effect of silicon on the kinetics of Nb(CN) precipitation during the hot working of Nb-bearing Steels [J]. ISIJ Int., 2000, 40: 613–618.Google Scholar
- 47.Irvine K J, Pickering F B, Gladman T. Grain Refined C-Mn Steels [J]. JISI, 1967, 205: 161–182.Google Scholar
- 48.Zurob H S, Zhu G, Subramanian S V, Purdy G R, Hutchinson C R, Brechet. Y. Analysis of the effect of Mn on the Recrystallization Kinetics of High Nb steel: An example of physical-based alloy design [J]. ISIJ Int., 2005, 45(5): 713–722.CrossRefGoogle Scholar
- 49.Wang C J, Yong Q L, Sun X J, Mao X P, Li Z D, Yong X, Effect of Ti and Mn contents on the precipitate characteristics and strengthening mechanism in Ti microalloyed steels produced by CSP [J]. Acta Metall., 2011, 47(12), 1541–1549.Google Scholar
- 50.Liu W J, Jonas J J. A Stress Relaxation Method for Following Carbonitride Precipitation in Austenite at Hot Working Temperatures [J]. Metall. Trans. A, 1988, 19A: 1403–1413.CrossRefGoogle Scholar
- 51.Watanabe H, Smith Y E, Pehlke R D. Precipitation kinetics of niobium carbonitride in austenite of high-strength low-alloy steels. The Hot deformation of austenite [M]. New York: TMS-AIME, 1977: 140–168.Google Scholar
- 52.Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2012, 60: 208–217.Google Scholar
- 53.Funakawa Y, Shiozaki T, Tomita K, et al. Development of High Strength Hot-rolled Sheet Steel Consisting of Ferrite and Nanometer-sized Carbides [J]. ISIJ Int., 2004, 44: 1945–1951.CrossRefGoogle Scholar
- 54.Yen H W, Huang C Y, Yang J R. Characterization of interphase-precipitated nanometer-sized carbides in a Ti-Mo-bearing steel [J]. Scripta Mater., 2009, 61: 616–619.Google Scholar
- 55.Seto K, Funakawa Y, Kaneko S. Hot Rolled High Strength Steels for Suspension and Chassis Parts “NANOHITEN” and “BHT® Steel” [J]. JFE Technical Report, 2007, 10:19–25.Google Scholar
- 56.Zhou Y, Materials Analysis Method [M]. Beijing: China Machine Press, 2011.Google Scholar
- 57.Pavlina E J, Speer J G, Van T C J. Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron [J]. Scripta Mater., 2012, 66: 243–246.CrossRefGoogle Scholar
- 58.Matsuda S, Okumura N. Effect of Distribution of TiN Precipitate Particle on the Austenite Grain Size of Low Carbon Low Alloy Steels [J]. Trans ISIJ, 1978, 18: 198–202.Google Scholar
- 59.Akben M G, Bacroix B, Jonas J J. Effect of Vanadium and Molybdenum Addition on High Temperature Recovery, Recrystallization and Precipitation Behavior of Niobium-based Microalloyed steels [J]. Acta Mater., 1983, 31: 161–174.CrossRefGoogle Scholar
- 60.Lee W B, Hong S G, Park C G, et al. Influence of Mo on Precipitation Hardening in hot Rolled HSLA Steels containing Nb [J]. Scripta Mater., 2000, 43: 319–324.CrossRefGoogle Scholar
- 61.Lee W B, Hong S G, Park C G, et al. Carbide Precipitation and High-Temperature Strength of Hot-rolled High-Strength, Low-Alloy Steels Containing Nb and Mo [J]. Metall Mater Trans A, 2002, 33A: 1689–1698.CrossRefGoogle Scholar
- 62.Pereda B, Fernadez A I, Lopez B, Rodriguez.ibabe J M. Effect of Mo on Dynamic Recrystallization Behavior of Nb-Mo Microalloyed Steels [J]. ISIJ Int., 2007, 47(6): 860–868.CrossRefGoogle Scholar
- 63.Lifshitz I M, Slyozov V V. The Kinetics of Precipitation from Supersaturated Solid Solutiions [J]. J. Phys. Chem. Solids, 1961, 19: 35–50.Google Scholar
- 64.Yong Q L. Ostwald ripening of second-phase particles in dilute solution-I. Universal differential equation [M]. Journal of Iron and Steel Research, 1991, 3(4), 51–60.Google Scholar
- 65.Yong Q L. Ostwald ripening of second-phase particles in dilute solution-I. Analytic solution [M]. Journal of Iron and Steel Research, 1992, 4(1), 59–66.Google Scholar