Skip to main content

Physical Metallurgical Principles of Titanium Microalloyed Steel—Dissolution and Precipitation of Titanium-Bearing Secondary Phases

  • Chapter
  • First Online:
Titanium Microalloyed Steel: Fundamentals, Technology, and Products

Abstract

The precipitation of microalloying elements is one of the most important issues in microalloyed steels. It is well recognized that controlling the precipitation process of microallying elements in steels is an effective means to significantly improve the strength of steel material due to precipitation strengthening and grain refinement by controlling the austenite grains coarsening during reheating process and recrystallization process. Moreover, controlling the precipitation behavior of secondary phases in steel, leading to an accurate control of volume fraction, shape, size and distribution of precipitates, could effectively improve the microstructure and mechanical properties, which is a significant issue for microalloyed steel in the field of theory research and production practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mao X P, Sun X J, Kang Y L, Lin Z Y. Physical metallurgy for the titanium microalloyed strip produced by thin slab casting and rolling process [J]. Acta Metallurgica Sinica, 2006, 42(10), 1091–1095.

    Google Scholar 

  2. Wang M L, Cheng G Q, Qiu S T, Zhao P, Gan Y. Behavior of precipitation containing titanium during solidification [J]. Journal of Iron and Steel Research, 2007, 19(5), 44–53.

    Google Scholar 

  3. Hansen M, Anderko K. Constitution of Binary Alloys [M]. New York: McGraw-Hill, 1958.

    Google Scholar 

  4. Yong Q L. Secondary Phase in Steel Materials [M]. Beijing: Metallurgy Industry Press, 2006.

    Google Scholar 

  5. Ye D L, Hu J H, Manual of Thermodynamic Data for Inorganic Substance [M]. Beijing: Metallurgy Industry Press, 2002.

    Google Scholar 

  6. Narita K. Physical Chemistry of the Groups IVa(Ti,Zr), Va(V,Nb,Ta) and the Rare Earth Elements in Steel [J]. Trans ISIJ, 1975, 15: 145–152.

    Google Scholar 

  7. Irvine K J, Pickering F B, Gladman T. Grain Refined C-Mn Steels [J]. JISI, 1967, 205: 161–182.

    Google Scholar 

  8. Chino H, Wada H. Jawata Tech Rep., 1965, 251: 5817.

    Google Scholar 

  9. Williams R, Harries W. Met Soc., 1974: 152.

    Google Scholar 

  10. Hillert M, Jonsson S. An Assessment of the Al-Fe-N System [J]. Metall Trans., 1992, 23A: 3141–3149.

    Google Scholar 

  11. Akamatsu S, Hasebe M, Senuma T, Matsumura Y, Akisue O. Thermodynamic Calculation of solute Carbon and Nitrogen in Nb and Ti Added Extra-low Carbon Steels [J]. ISIJ Inter., 1994, 34: 9–16.

    Article  CAS  Google Scholar 

  12. Matsuda S, Okumura N. Effect of Distribution of TiN Precipitate Particle on the Austenite Grain Size of Low Carbon Low Alloy Steels [J]. Trans ISIJ, 1978, 18: 198–202.

    Google Scholar 

  13. Gurevic J G. Gernaya Metallurgija, 1960(6): 59.

    Google Scholar 

  14. Adachi A, Mizukawa K, Kanda K. Tetsu-to-Hagane, 1962, 48: 1436.

    Google Scholar 

  15. Kunze J. Solubility product of titanium nitride in gamma-iron [J]. Met. Sci., 1982, 16: 217–218.

    Google Scholar 

  16. [16]Wada H, Pehlke R D. Nitrogen Solubility and Nitride Formation in Austenitic Fe-Ti Alloys [J]. Metall. Trans., 1985, 16B: 815–822.

    Article  Google Scholar 

  17. Turkdogan E T. Causes and effects of nitride and carbonitride precipitation during continuous casting [J]. Iron Steelmaker, 1989, 16: 61–75.

    Google Scholar 

  18. Inoue K, Ohnuma I, Ohtani H, Ishida K, Nishizawa T. Solubility Product of TiN in Austenite [J]. ISIJ Inter. 1998, 38: 991–997.

    Article  CAS  Google Scholar 

  19. Tailor K A. Solubility Products for Titanium-, Vanadium- and Niobium-Carbides in Ferrite [J]. Script Metall. Mater., 1995, 32: 7–12.

    Google Scholar 

  20. Akamatsu S, Hasebe M, Senuma T, Matsumura Y, Akisue O. Thermodynamic Calculation of solute Carbon and Nitrogen in Nb and Ti Added Extra-low Carbon Steels [J]. ISIJ Inter., 1994, 34: 9–16.

    Article  CAS  Google Scholar 

  21. Chen J X, Manual of Figures and Tables for Steelmaking [M]. Beijing: Metallurgy Industry Press, 1984.

    Google Scholar 

  22. Liu W J, Yue S, Jonas J J. Characterization of Ti Carbosulfide Precipitation in Ti Microalloyed Steels [J]. Metall Trans., 1989, 20A: 1907–1915.

    Article  Google Scholar 

  23. Liu W J, Jonas J J, Bouchard D. Gibbs Energies of Formation of TiS and Ti4C2S2 in austenite [J]. ISIJ Inter., 1990, 30: 985–990.

    Google Scholar 

  24. Swisher J H. Sulphur Solubility and Internal Sulfidation of Iron-Titanium Alloys [J]. Trans. Metall. Soc. AIME, 1968, 242: 2433.

    Google Scholar 

  25. Yoshinaga N, Ushioda K, Akamatsu S, Akisue O. Precipitation Behavior of Sulfides in Ti-added Ultra Low-carbon Steels in austenite [J]. ISIJ Inter., 1994, 34:24–32.

    Article  CAS  Google Scholar 

  26. Yang X, Vanderschueren D, Dilewijns J, Standaert C, Houbaert Y. Solubility Products of Titanium Sulphide and Carbosulfide in Ultra-low Carbon Steels [J]. ISIJ Inter., 1996, 36: 1286–1294.

    Google Scholar 

  27. Copreaux J, Gaye H, Henry J. Relation Précipitation-Propriétés Dans Les Aciers Sans Interisticiels Recuits en Continu [R]. ECSC Report, EUR17806 FR, 1997.

    Google Scholar 

  28. Mitsui H, Oikawa K, Onuma I. Phase Stability of TiS and Ti4C2S2 in Steel [J]. CAMP-ISIJ, 2004, 17: 1275.

    Google Scholar 

  29. Iorio L E, Garrison W M. Solubility of Titanium Carbosulfide in Austenite [J]. ISIJ Inter., 2002, 42: 545–550.

    Google Scholar 

  30. Yamashita T, Okuda K, Yasuhara E. Thermodynamic Analysis of Precipitation Behaviors of Ti, Mn Sulphide in Hot-rolled Steel Sheets [J]. Tetsu-to-Hagane, 2007, 93: 538–543.

    Google Scholar 

  31. Mizui N, Takayama T, Sekine K. Effect of Mn on Solubility of Ti-sulfide and Ti-carbosulfide in Ultra-low C Steels [J]. ISIJ Inter., 2008, 48: 845–850.

    Article  CAS  Google Scholar 

  32. Moll S H, Ogilvie R E. Trans. Metall. Soc. AIME, 1959, 215: 613–618.

    Google Scholar 

  33. Lai D Y F, Borg J. USAEC Rept. UCRL 50314, 1967.

    Google Scholar 

  34. Dyment F, Libanati C M. Self-diffusion of Ti, Zr, and Hf in their HCP phases, and diffusion of in HCP Zr [J]. Mater. Sci., 1968, 3: 349–359.

    Google Scholar 

  35. Walsoe de Reca N E, Libanati C M. Acta Met., 1968, 16: 1297.

    Google Scholar 

  36. Kulkarni S R, Merlini M, Phatak N, Saxena S K, Artioli G, Amini S, Barsoum M W. Thermal expansion and stability of Ti2SC in air and inert atmospheres [J]. Alloys Compounds, 2009, 463(1–2): 395–400.

    Article  CAS  Google Scholar 

  37. Davenport A T, Brossard L C, Miner R E. Metals, 1975, 27(6): 21.

    Google Scholar 

  38. Baker R G, Nutting J. ISI Special Report, No. 64, London: ISI, 1959: 1.

    Google Scholar 

  39. Zener C. quoted by Smith C S, Grains, Phases, and Interfaces: An Interpretation of Microstructure [J]. Trans AIME, 1948, 175:47.

    Google Scholar 

  40. Cahn R W. Physical Metallurgy [M]. Netherlands: North-Holland, 1970.

    Google Scholar 

  41. Yong Q. Theory of Nucleation on Dislocations [J]. Chin J Met. Sci. Tech., 1990, 6: 239–243.

    Google Scholar 

  42. Liu W J, Jonas J J. Ti(C,N) Precitated in Microalloyed Austenite during Stress Relaxation [J]. Met. Trans. A., 1988, 19A: 1415–1424.

    Google Scholar 

  43. Yong Q L, Ma M T, Wu B R, Physical and Mechanical Metallurgy of Microalloyed Steel [M]. Beijing: China Machine Press, 1989.

    Google Scholar 

  44. Akben M G, Weiss I, Jonas J J. Dynamic precipitation and solute hardening in a V microalloyed steel and two Nb steels containing high levels of Mn [J]. Acta Metall., 1981, 29(4): 111–121.

    Article  CAS  Google Scholar 

  45. Akben M G, Chandra T, Plassiard P, et al. Dynamic precipitation and solute hardening in a titanium microalloyed steel containing three levels of manganese [J]. Acta Metall., 1984, 32(4):591–601.

    Article  CAS  Google Scholar 

  46. Dong J X, Siciliano J F, Jonas J J, et al. Effect of silicon on the kinetics of Nb(CN) precipitation during the hot working of Nb-bearing Steels [J]. ISIJ Int., 2000, 40: 613–618.

    Google Scholar 

  47. Irvine K J, Pickering F B, Gladman T. Grain Refined C-Mn Steels [J]. JISI, 1967, 205: 161–182.

    Google Scholar 

  48. Zurob H S, Zhu G, Subramanian S V, Purdy G R, Hutchinson C R, Brechet. Y. Analysis of the effect of Mn on the Recrystallization Kinetics of High Nb steel: An example of physical-based alloy design [J]. ISIJ Int., 2005, 45(5): 713–722.

    Article  CAS  Google Scholar 

  49. Wang C J, Yong Q L, Sun X J, Mao X P, Li Z D, Yong X, Effect of Ti and Mn contents on the precipitate characteristics and strengthening mechanism in Ti microalloyed steels produced by CSP [J]. Acta Metall., 2011, 47(12), 1541–1549.

    Google Scholar 

  50. Liu W J, Jonas J J. A Stress Relaxation Method for Following Carbonitride Precipitation in Austenite at Hot Working Temperatures [J]. Metall. Trans. A, 1988, 19A: 1403–1413.

    Article  Google Scholar 

  51. Watanabe H, Smith Y E, Pehlke R D. Precipitation kinetics of niobium carbonitride in austenite of high-strength low-alloy steels. The Hot deformation of austenite [M]. New York: TMS-AIME, 1977: 140–168.

    Google Scholar 

  52. Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2012, 60: 208–217.

    Google Scholar 

  53. Funakawa Y, Shiozaki T, Tomita K, et al. Development of High Strength Hot-rolled Sheet Steel Consisting of Ferrite and Nanometer-sized Carbides [J]. ISIJ Int., 2004, 44: 1945–1951.

    Article  CAS  Google Scholar 

  54. Yen H W, Huang C Y, Yang J R. Characterization of interphase-precipitated nanometer-sized carbides in a Ti-Mo-bearing steel [J]. Scripta Mater., 2009, 61: 616–619.

    Google Scholar 

  55. Seto K, Funakawa Y, Kaneko S. Hot Rolled High Strength Steels for Suspension and Chassis Parts “NANOHITEN” and “BHT® Steel” [J]. JFE Technical Report, 2007, 10:19–25.

    Google Scholar 

  56. Zhou Y, Materials Analysis Method [M]. Beijing: China Machine Press, 2011.

    Google Scholar 

  57. Pavlina E J, Speer J G, Van T C J. Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron [J]. Scripta Mater., 2012, 66: 243–246.

    Article  CAS  Google Scholar 

  58. Matsuda S, Okumura N. Effect of Distribution of TiN Precipitate Particle on the Austenite Grain Size of Low Carbon Low Alloy Steels [J]. Trans ISIJ, 1978, 18: 198–202.

    Google Scholar 

  59. Akben M G, Bacroix B, Jonas J J. Effect of Vanadium and Molybdenum Addition on High Temperature Recovery, Recrystallization and Precipitation Behavior of Niobium-based Microalloyed steels [J]. Acta Mater., 1983, 31: 161–174.

    Article  CAS  Google Scholar 

  60. Lee W B, Hong S G, Park C G, et al. Influence of Mo on Precipitation Hardening in hot Rolled HSLA Steels containing Nb [J]. Scripta Mater., 2000, 43: 319–324.

    Article  CAS  Google Scholar 

  61. Lee W B, Hong S G, Park C G, et al. Carbide Precipitation and High-Temperature Strength of Hot-rolled High-Strength, Low-Alloy Steels Containing Nb and Mo [J]. Metall Mater Trans A, 2002, 33A: 1689–1698.

    Article  Google Scholar 

  62. Pereda B, Fernadez A I, Lopez B, Rodriguez.ibabe J M. Effect of Mo on Dynamic Recrystallization Behavior of Nb-Mo Microalloyed Steels [J]. ISIJ Int., 2007, 47(6): 860–868.

    Article  CAS  Google Scholar 

  63. Lifshitz I M, Slyozov V V. The Kinetics of Precipitation from Supersaturated Solid Solutiions [J]. J. Phys. Chem. Solids, 1961, 19: 35–50.

    Google Scholar 

  64. Yong Q L. Ostwald ripening of second-phase particles in dilute solution-I. Universal differential equation [M]. Journal of Iron and Steel Research, 1991, 3(4), 51–60.

    Google Scholar 

  65. Yong Q L. Ostwald ripening of second-phase particles in dilute solution-I. Analytic solution [M]. Journal of Iron and Steel Research, 1992, 4(1), 59–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qilong Yong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Metallurgical Industry Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yong, Q., Sun, X., Li, Z., Wang, Z., Zhang, K. (2019). Physical Metallurgical Principles of Titanium Microalloyed Steel—Dissolution and Precipitation of Titanium-Bearing Secondary Phases. In: Mao, X. (eds) Titanium Microalloyed Steel: Fundamentals, Technology, and Products. Springer, Singapore. https://doi.org/10.1007/978-981-13-3332-3_3

Download citation

Publish with us

Policies and ethics