Advertisement

Introduction

  • Xinping MaoEmail author
  • Qilong Yong
  • Xiangdong Huo
Chapter

Abstract

In 1963, the Swedish Noren first proposed the definition of microalloyed steel, namely the Mn-bearing alloy steel or low-alloyed steel with the addition of a small amount of alloying elements. The alloying element has a significant effect on one or several properties of steel, and its amount is smaller than that of traditional alloying element in steel by 1–2 orders of magnitude (Noren in Special report on Columbium as a microalloying element in steel and its effect on welding technology. Ship Structure Committee, Washington, 1963, [1]). This definition has been widely adopted around the world and has been in use up to now. Titanium microalloyed steel is such one kind of microalloyed steel, and titanium is a typical microalloying element. There are other similar elements, such as niobium, vanadium and boron.

Keywords

Titanium microalloying technology Titanium microalloyed steel Grain refinement strengthening Precipitation strengthening 

References

  1. 1.
    Noren T M. Special report on columbium as a microalloying element in steel and its effect on welding technology [R]. Washington: Ship Structure Committee, 1963.Google Scholar
  2. 2.
    Leyens C, Peters M (eds). Titanium and titanium alloys [M]. Weinheim: Willey-VCH, 2003.Google Scholar
  3. 3.
    Loss R D. Atomic weights of the elements 2001 [J]. Pure Appl. Chem., 2003, 75: 1107–1122.Google Scholar
  4. 4.
    Brandes E A. Smithells metals reference book [M]. 6th edition. London: Butterworth & Co. Ltd., 1983.Google Scholar
  5. 5.
    Yong Q L, Ma M T, Wu B R. Physical-mechanical metallurgy of microalloyed steel [M]. Machinery Industry Press, Beijing, 1989.Google Scholar
  6. 6.
    Zener C, Smith C S. Grains, phases, and interfaces: an interpretation of microstructure [J]. Trans AIME, 1948, 175:47.Google Scholar
  7. 7.
    Hillert M. On the theory of normal and abnormal grain growth [J]. Acta Metal., 1965,13: 227–238.CrossRefGoogle Scholar
  8. 8.
    Gladman T. The theory of precipitate particles on grain growth in metals [C]. Proc. Roy. Soc., 1966, 294A: 298–309.Google Scholar
  9. 9.
    Pickering F B. Physical metallurgy and the design of steels [M]. London: Applied Sci. Pub., 1978.Google Scholar
  10. 10.
    Balance J B. The hot deformation of austenite [C]. New York: TMS-AIME, 1976.Google Scholar
  11. 11.
    Cuddy L J. The effect of microalloy concentration on the recrystallization of austenite during hot deformation [C]. In: DeArdo A J, Ratz G A (eds), Thermomechanical processing of microalloyed austenite, Warrendale: TMS-AIME, 1984: 129–140.Google Scholar
  12. 12.
    Dong H, Sun X J, Liu Q Y, et al. Deformation induced ferrite transformation-phenomena and theory. Iron and Steel, 2003, 38(10), 56–67.Google Scholar
  13. 13.
    Dong H, Sun X J. Deformation induced ferrite transformation in low carbon steels [J]. Current Opinion in Solid State and Materials Science, 2005, 9: 269–276.CrossRefGoogle Scholar
  14. 14.
    Sun X J, Dong H, Liu Q Y, et al. On post-dynamic austenite-to-ferrite transformation in a low carbon steel [C]. Proceedings of the 3rd International Conference on Advanced Structural Steels.Gyeongju (Korea), 2006: 105–110.Google Scholar
  15. 15.
    Hajeri K F, Garcia C I, Hua M J, et al. Particle-stimulated nucleation of ferrite in heavy steel sections [J]. ISIJ Inter. 2006, 46(8): 1233–1240.Google Scholar
  16. 16.
    Mao X P. Microalloying technology on thin slab casting and direct rolling process [M]. Metallurgy Industry Press, Beijing, 2008.Google Scholar
  17. 17.
    Gladman T. The physical metallurgy of microalloyed steels [M]. London: The Institute of Materials, 1997.Google Scholar
  18. 18.
    Cahn R W. Physical metallurgy [M]. Netherlands: North-Holland, 1970.Google Scholar
  19. 19.
    Yong Q L. Theoretical analysis on the mechanism of precipitation strengthening of microalloyedcarbonitride in ferrite. Chinese Science Bulletin, 1989, 34(19): 707–709.Google Scholar
  20. 20.
    Yong Q L, Sun X J, Yang G W, et al. Solution and precipitation of secondary phase in steels: phenomenon, theory and practice.Google Scholar
  21. 21.
    Yong Q L, Zhen L, Sun Z B, Precipitation and precipitation strengthening of niobium carbide in ferrite in microalloyed steel. Acta Metallurgica Sinica, 1984, 20(1): 9–16.Google Scholar
  22. 22.
    Takechi H. Metallurgical aspects on interstitial free sheet steel from industrial viewpoints [J]. ISIJ Inter. 1994, 34(1): 1–8.CrossRefGoogle Scholar
  23. 23.
    Hui W J, Dong H, Weng Y Q, et al. Effect of vanadium microalloying on delayed fracture resistance of high strength steel [J]. Heat Treatment of Metals, 2002, 27(1):10–12.Google Scholar
  24. 24.
    Hui W J, Dong H, Weng Y Q, et al. Effect of titanium on delayed fracture resistance of high strength steel, Journal of Iron and Steel Research, 2002, 14(1):30–33.Google Scholar
  25. 25.
    Baker L J, Daniel S R, Parker J D. Metallurgy and processing of ultralow carbon bake hardening steels [J]. Mater. Sci. Tech., 2002, 18(4): 355.CrossRefGoogle Scholar
  26. 26.
    Gladman T, Dulieu D, Mcivor, I D. Structure-property relationships in high-strength microalloyed steels [C]. In: Proc. of Symp. On Microalloying 75, Union Carbide Corp., New York, 1976: 32–55.Google Scholar
  27. 27.
    Zhen Y Z, Fitzsimons G, Fix R M, et al. Recrystallization controlled rolling and air cooling of V-Ti-N microalloyed steel [J]. Iron Steel Vanadium Titanium, 1985(3): 12–19.Google Scholar
  28. 28.
    Mao X P, Huo X D, Sun X J, et al. Strengthening mechanisms of a new 700MPa hot rolled Ti-microalloyed steel produced by compact strip production [J]. Journal of Materials Processing Technology, 2010, 210:1660–1669.CrossRefGoogle Scholar
  29. 29.
    Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides [J]. ISIJ Int., 2004, 44:1945–1951.CrossRefGoogle Scholar
  30. 30.
    Seto K, Funakawa Y, Kaneko S. Hot rolled high strength steels for suspension and chassis parts “NANOHITEN” and “BHT® Steel” [J]. JFE Technical Report, 2007(10): 19–25.Google Scholar
  31. 31.
    Shanmugam S, Ramisetti N K, Misra R D, et al. Microstructure and high strength–toughness combination of a new 700MPaNb-microalloyed pipeline steel [J]. Materials Science and Engineering, 2008, 478 A: 26–37.Google Scholar
  32. 32.
    Yi H L, Du L X, Wang G D, et al. Development of a hot-rolled low carbon steel with high yield strength [J]. ISIJ International, 2006, 46 (5): 754–758.CrossRefGoogle Scholar
  33. 33.
    Zhang K, Li Z D, Sun X J, et al. Development of Ti–V–Mo complex microalloyed hot-rolled 900MPa-grade high-strength steel [J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28(5), 641–648.CrossRefGoogle Scholar
  34. 34.
    Chen C Y, Yen H W, Kao F H, et al. Precipitation hardening of high-strength low-steels by nanometer-sized carbides [J]. Materials Science and Engineering A, 2009, 499: 162–166.CrossRefGoogle Scholar
  35. 35.
    Wang T P, Kao F H, Wang S H, et al. Isothermal treatment influence on nanometer-size carbide precipitation of titanium-bearing low carbon steel [J]. Materials Letters, 2011, 65: 396–399.CrossRefGoogle Scholar
  36. 36.
    Yen H W, Huang C Y, Yang J R. Characterization of interphase precipitated nanometer-sized carbides in a Ti-Mo-bearing steel [J]. ScriptaMaterialia, 2009, 61: 616–619.Google Scholar
  37. 37.
    Yen H W, Chen P Y, Huang C Y, et al. Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel [J]. ActaMaterialia, 2011, 59: 6264–6274.CrossRefGoogle Scholar
  38. 38.
    Deardo A J. Metallurgical basis for thermomechanical processing of microalloyed steels [J]. Ironmak.Steelmak., 2001, 28(2): 138–144.CrossRefGoogle Scholar
  39. 39.
    Cuddy L J. Microstructure developed during thermomechanical treatment of HSLA steels [J]. Metall. Trans. A, 1981, 12A(7): 1313–1320.Google Scholar
  40. 40.
    Zhang J, Baker T N. Effect of equalization time on the austenite grain size of simulated thin slab direct charged (TSDC) vanadium microalloyed steels [J]. ISIJ International, 2003, 43(12): 2015–2022.CrossRefGoogle Scholar
  41. 41.
    Funakawa Y, Seto K. Coarsening behavior of nanometer-sized carbide in hot rolled high strength sheet steel [J]. Mater. Sci. Forum, 2007, 539–543: 4813-4818.Google Scholar
  42. 42.
    Funakawa Y. Mechanical properties of ultra fine particle dispersion strengthened ferritic steel [J]. Mater. Sci. Forum, 2012, 706–709: 2096–2100.Google Scholar
  43. 43.
    Kim Y W, Song S W, Seo S J, et al. Development of Ti and Mo micro-alloyed hot-rolled high strength sheet steel by controlling thermomechanical controlled processing schedule [J]. Mater. Sci. Eng. A, 2013, 565: 430–438.CrossRefGoogle Scholar
  44. 44.
    Wang C J. Research on the control and mechanical behavior of metastable austenite and precipitates in multi-phase structure steel [D], PhD thesis, Central Iron and Steel Research Institute, Beijing, 2013.Google Scholar
  45. 45.
    Zhang K, Yong Q L, Sun X J et al. Effect of coiling temperature on microstructure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel [J]. Acta Metallurgica Sinica, 2016, 52(5): 529–537.Google Scholar
  46. 46.
    Kim Y W, Kim J H, Hong S, et al. Effects of rolling temperature on the microstructure and mechanical properties of Ti-Mo microalloyed hot-rolled high strength steel [J]. Materials Science and Engineering: A, 2014, 605: 244–252.CrossRefGoogle Scholar
  47. 47.
    Shen Y F, Wang C M, Sun X. A micro-alloyedferritic steel strengthened by nanoscale precipitates [J]. Materials Science and Engineering: A, 2011, 528: 8150–8156.CrossRefGoogle Scholar
  48. 48.
    Jha G, Das S, Lodh A, et al. Development of hot rolled steel sheet with 600MPa UTS for automotive wheel application [J]. Materials Science and Engineering: A, 2012, 552: 457–463.CrossRefGoogle Scholar
  49. 49.
    Jha G, Das S, Sinha S, et al. Design and development of precipitate strengthened advanced high strength steel for automotive application [J]. Materials Science and Engineering: A, 2013, 561: 394–402.CrossRefGoogle Scholar

Copyright information

© Metallurgical Industry Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Baosteel Central Research InstituteWuhanChina
  2. 2.Central Iron & Steel Research InstituteBeijingChina
  3. 3.Jiangsu UniversityZhenjiangChina

Personalised recommendations