Advertisement

Low-Power Process-Insensitive Operational Amplifier Design

  • D. AnithaEmail author
  • K. Manjunatha Chari
  • P. Satish Kumar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 862)

Abstract

A low-power process-insensitive buffered operational amplifier (Opamp) is presented. Current reference circuit of the Opamp is designed by a process invariant current source to achieve better tolerance to process variations without degrading other performance parameters. Simulation results are obtained by using Cadencetools with GPDK 180 nm library and supply voltage of ±0.6 V. The proposed Opamp has shown 42% better process tolerance than the basic CMOS Opamp and it consumes only 54 uW of power, whereas the power consumption is 91 uW for the later.

Keywords

Opamp Process insensitive Low power Current reference 

References

  1. 1.
    R. Behzad, Design of Analog CMOS Integrated circuits (McGraw-Hill, New York, 2010)Google Scholar
  2. 2.
    P.E. Allen, D.R. Holberg, CMOS Analog Circuit Design, 3rd edn. (Oxford University Press, Oxford, 2011)Google Scholar
  3. 3.
    R.J. Baker, CMOS Circuit Design, Layout, and Simulation, 3rd edn. (IEEE Press, New York, 2010)CrossRefGoogle Scholar
  4. 4.
    X. Zhang, A.B. Apsel, A low-power process-and- temperature- compensated ring oscillator with addition-based current source. IEEE Trans. Circ. Syst. I Reg. Pap. 58(5), 868–878 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Pappu, A.V. Harrison, A.B. Apsel, X. Zhang, Process -invariant current source design: methodology and examples. IEEE J. Solid-State Circ. 42(10), 2293–2302 (2007)CrossRefGoogle Scholar
  6. 6.
    G. Prasad, K. Sharma, 170 MHz GBW, two stage CMOS operational amplifier with high slew rate using 180 nm technology, in Proceeding of IEEE INDICON (2015)Google Scholar
  7. 7.
    D. Anitha, K.M. Chari, P.S. Kumar, Low voltage and low power PVT compensated Opamp using addition based current source, in Proceeding of IEEE ICSCTI (2015)Google Scholar
  8. 8.
    O. Abdelfattah, G.W. Roberts, I. Shih, Y.-C. Shih, An Ultra low-voltage CMOS process-insensitive self-biased OTA with rail-to-rail input range. IEEE transactions on circuits and systems 62, 2380–2390 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Dai, X. Cao, T. Yi, A.E. Hubbard, Z. Hong, 1-V low-power programmable rail-to-rail operational amplifier with improved transconductance feedback technique. IEEE Trans. Very Large Scale Integr. Syst. 21(10), 1928–1935 (2013)CrossRefGoogle Scholar
  10. 10.
    K. Singh, V. Mehta, M. Singh, in Physical Design of Two Stage Ultra Low Power, High Gain CMOS Op-amp for Portable Device ApplicationsGoogle Scholar
  11. 11.
    J.M. Carrillo, G. Torelli, R. Pérez-Aloe, J.F. Duque-Carrillo, 1-V rail-to-rail CMOS opamp with improved bulk-driven input stage. IEEE J. Solid-State Circ. 42(3), 508–517 (2007)CrossRefGoogle Scholar
  12. 12.
    M. Pourabollah, A new gain-enhanced and slew-rate-enhanced folded-cascode opamp. Analog Integr. Circ. Sig. Process. 88(1), 43–56 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Chatterjee, Y. Tsividis, P. Kinget, 0.5-V analog circuit techniques and their application in OTA and filter design. IEEE J. Solid-State Circ. 40(12), 2373–2387 (2005)CrossRefGoogle Scholar
  14. 14.
    G. Raikos, S. Vlassis, Low-voltage bulk-driven input stage with improved transconductance. Int. J. Circ. Theor. Appl. (Wiley Library) (2011)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • D. Anitha
    • 1
    Email author
  • K. Manjunatha Chari
    • 1
  • P. Satish Kumar
    • 2
  1. 1.Department of ECEGITAM UniversityHyderabadIndia
  2. 2.Department of ECEACE College of EngineeringHyderabadIndia

Personalised recommendations