Life in Motion

  • V. Srinivasa ChakravarthyEmail author


Motion is generally believed to be a defining feature of life. By the power of motion an organism hunts down its prey, flees its predators, shifts to superior habitats, and moves from where it is to where it wants to be. (Familiar stationary life forms—the plant life that we see around us—do not have the same advantage.) Like the opposable thumb, or encephalization, the ability to move, to proactively propel itself and plough through a resisting world marks a great milestone of evolution.


  1. Basmajian, J. V. (1962). Muscles alive. Their functions revealed by electromyography. Academic Medicine, 37(8), 802.Google Scholar
  2. Biewener, A. A. (2011). Muscle function in avian flight: Achieving power and control. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1570), 1496–1506. Scholar
  3. Brown, T. G. (1911). The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society of London, Series B: Biological Sciences, 84(572), 308–319.CrossRefGoogle Scholar
  4. Bullock, D., & Grossberg, S. (1988). Neural dynamics of planned arm movements: Emergent invariants and speed-accuracy properties during trajectory formation. Psychological Review, 95(1), 49.CrossRefGoogle Scholar
  5. Chakravarthy, V. S. (2013). Do Basal Ganglia amplify willed action by stochastic resonance? A model. PLoS ONE, 8(11), e75657P.CrossRefGoogle Scholar
  6. Chakravarthy, V. S., & Moustafa, A. A. (2018). Computational Neuroscience Models of the Basal Ganglia, Springer Verlag, Singapore.Google Scholar
  7. Dick, J. P. R., Rothwell, J. C., Day, B. L., Cantello, R., Buruma, O., Gioux, M., et al. (1989). The Bereitschaftspotential is abnormal in Parkinson’s disease. Brain, 112(1), 233–244.CrossRefGoogle Scholar
  8. Foerster, O. (1936). The motor cortex in man in the light of Hughlings Jackson’s doctrines. Brain, 59(2), 135–159.CrossRefGoogle Scholar
  9. Gemmell, B. J., Costello, J. H., Colin, S. P., Stewart, C. J., Dabiri, J. O., Tafti, D., et al. (2013). Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans. Proceedings of the National Academy of Sciences. Scholar
  10. Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233(4771), 1416–1419.CrossRefGoogle Scholar
  11. Jahanshahi, M. (1998). Willed action and its impairments. Cognitive Neuropsychology, 15(6–8), 483–533.CrossRefGoogle Scholar
  12. James, W. (1890). Principles of psychology. London: McMillan.Google Scholar
  13. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (1991). Principles of neural science (3rd ed., p. 559). New York: Elsevier.Google Scholar
  14. Kornhuber, H. H., & Deecke, L. (1964). Hirnpotentialanderungen beim Menschen vor und nach Willkurbewegungen dargestellt mit Magnetbandspeicherung und Ruckwartsanalyse. Pflugers Archiv-European Journal of Physiology, 281(1), 52.Google Scholar
  15. Latash, M. L. (2008). Neurophysiological basis of movement. Champaign: Human Kinetics.Google Scholar
  16. Loeb, G. L., & Chez, C. (2000). The motor unit and muscle action. In E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.), Principles of neural science (Vol. 4, Chapter 34). New York: McGraw-Hill.Google Scholar
  17. Lundberg, A. (1981). Half-centres revisited. In Advances in physiological sciences. Regulatory functions of the CNS: Motion and organization principles. J. Szentagothai, M. Palkovits, & J. Hamori (Eds)., Vol. 1 (pp. 155–167). Budapest: Pergamon/Akademiai Kiado.CrossRefGoogle Scholar
  18. Nussbaum, M., & Nussbaum, M. C. (1985). Aristotle’s De Motu Animalium: Text with translation, commentary, and interpretive essays. Princeton: Princeton University Press.Google Scholar
  19. Pearson, K., & Gordon, J. (2000). Spinal reflexes. In E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.), Principles of neural science (Vol. 4, Chapter 36). New York: McGraw-Hill.Google Scholar
  20. Penfield, W. (1961). Activation of the record of human experience: Summary of the lister oration delivered at the Royal College of Surgeons of England* on 27th April 1961. Annals of the Royal College of Surgeons of England, 29(2), 77.Google Scholar
  21. Prashanth, P. S., & Chakravarthy, V. S. (2007). An oscillator theory of motor unit recruitment in skeletal muscle. Biological Cybernetics, 97, 351–361.CrossRefGoogle Scholar
  22. Ruppert, E. E., Fox, R. S., & Barnes, R. D. (2004). Invertebrate zoology (7th ed., p. 82). Pacific Grove: Brooks/Cole.Google Scholar
  23. Schurger, A., Sitt, J. D., & Dehaene, S. (2012). An accumulator model for spontaneous neural activity prior to self-initiated movement. Proceedings of National Academy of Sciences, 109(42).CrossRefGoogle Scholar
  24. Shik, M. L., Severin, F. V., & Orlovsky, G. N. (1969). Control of walking and running by means of electrical stimulation of the mesencephalon. Electroencephalography and Clinical Neurophysiology, 26(5), 549.Google Scholar
  25. Smith, K. K., & Kier, W. M. (1989). Trunks, tongues, and tentacles: Moving with skeletons of muscle. American Scientist, 77(1), 28–35.Google Scholar
  26. Vogel, S. (2003). Prime mover: A natural history of muscle. New York: WW Norton & Company.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Indian Institute of Technology MadrasChennaiIndia

Personalised recommendations