Advertisement

Effect of Nano-Silica and GGBS on the Strength Properties of Fly Ash-Based Geopolymers

  • A. Ravitheja
  • N. L. N. Kiran Kumar
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 25)

Abstract

In this study, the roles of reactive alumina and process variables such as sodium content and molarity on the alkaline activation of nano-silica and ground-granulated blast-furnace slag are explored. Reactive alumina content of fly ash is the key parameter that determines the maximum compressive strength achieved from the alkaline activation. This paper also investigated the role played by nano-silica in fly ash-based geopolymer binders. The principal source of aluminosilicate is low-calcium fly ash, which was slowly blended with blast furnace slag to accelerate curing at ambient temperature. Then, different rates of colloidal nano-silica were added to the total binder on the days 3, 7, and 28 of curing.

Keywords

Fly ash GGBS Colloidal nano-silica Ambient curing Strength properties 

References

  1. 1.
    Cheng, T. W., & Chiu, J. P. (2003). Fire-resistant geopolymer produced by granulated blast furnaceslag. Minerals Engineering, 16, 205–210.CrossRefGoogle Scholar
  2. 2.
    Chindaprasirt, P., Rattanasak, U., Vongvoradit, P., & Jenjirapanya, S. (2012). Thermal treatment and utilization of Al-rich waste in high calcium fly ash geopolymeric materials. International Journal of Minerals, Metallurgy and Materials, 19, 872–878.CrossRefGoogle Scholar
  3. 3.
    Hwang, C. L., & Huynh, T. P. (2015). Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Construction and Building Materials, 101, 1–9.CrossRefGoogle Scholar
  4. 4.
    Gao, K., Lin, K. L., Wang, D. Y., Hwang, C. L., Shiu, H. S., & Chang, Y. M. (2014). Effects SiO2 molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers. Construction and Building Materials, 53, 503–510.CrossRefGoogle Scholar
  5. 5.
    He, J., Jie, Y., Zhang, J., Yu, Y., & Zhang, G. (2013). Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cement and Concrete Composites, 37, 108–118.CrossRefGoogle Scholar
  6. 6.
    Fernandez-Jimenez, A., & Palomo, A. (2005). Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cement and Concrete Research, 35, 1984–1992.CrossRefGoogle Scholar
  7. 7.
    Van Jaarsveld, J. G. S., Van Deventer, J. S. J., & Lukey, G. C. (2003). The characterisation of source materials in fly ash-based geopolymers. Materials Letters, 57, 1272–1280.CrossRefGoogle Scholar
  8. 8.
    Bhagath Singh, G. V. P., & Subramaniam, K. V. L. (2016). Quantitative XRD analysis of binary blends of siliceous fly ash and hydrated cement. Journal of Material Civil Engineering (ASCE), 28, 1–7.CrossRefGoogle Scholar
  9. 9.
    Duxson, P., Fernandez-Jimenez, A., Provis, J. L., Lukey, G. C., Palomo, A., & Van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. Journal Materials Science, 42, 2917–2933.CrossRefGoogle Scholar
  10. 10.
    Van Deventer, J. S. J., Provis, J. L., Duxon, P., & Lukey, G. C. (2007). Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. The Journal of Hazardous Materials A, 139, 506–513.CrossRefGoogle Scholar
  11. 11.
    Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and Building Materials, 47, 409–418.CrossRefGoogle Scholar
  12. 12.
    Alvarez-Ayuso, E., Querol, X., Plana, F., Alastuey, A., Moreno, N., Izquierdo, M., et al. (2008). Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-) combustion fly ashes. Journal of Hazardous Materials, 15, 175–183.CrossRefGoogle Scholar
  13. 13.
    Criado, M., Fernandez-Jimenez, A., De la Torre, A. G., Aranda, M. A. G., & Palomo, A. (2007). An XRD study of the effect of the SiO2 ratio on the alkali activation of fly ash. Cement and Concrete Research, 37, 671–679.CrossRefGoogle Scholar
  14. 14.
    Songpiriyakij, S., Kubprasit, T., Jaturapitakkul, C., & Chindaprasirt, P. (2010). Compressive strength and degree of reaction of biomass and fly ash-based geopolymer. Construction and Building Materials, 24, 236–240.CrossRefGoogle Scholar
  15. 15.
    Jang, J. G., & Lee, H. K. (2010). Effect of fly ash characteristics on delayed high-strength development of geopolymers. Construction and Building Material, 102.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.JNTU College of EngineeringAnantapurIndia
  2. 2.Department of Civil EngineeringGeethanjali Institute of Science and TechnologyNelloreIndia

Personalised recommendations