System-Level Modelling of MEMS Vibrating-Reed Electrometer in Matlab Simulink

  • Yong ZhuEmail author
  • Y. Kuang


Micromachined mechanical variable capacitor is a key component of many microelectromechanical systems (MEMS) devices, such as pressure sensor, accelerometer, gyroscope, electrometer, etc. Optimization of these devices require a systematic consideration of parameter design in both mechanical and electrical domains. This chapter introduces the system-level modelling of a variable capacitor-based MEMS electrometry system. To simultaneously simulate the mechanical and electrical components, Matlab Simulink was adopted as the simulation environment to build the system model. Four main modelling blocks were developed to model the entire system, including electrostatic force generator, equivalent circuit representation of spring-mass-damper mechanical system, time-dependent variable capacitor controlled by in-line equation, and integration of variable capacitor into the actual detection circuitry. The whole electrometry system was successfully simulated in Simulink, and the detailed simulation results are shown in this chapter, such as the waveforms of driving force, shuttle displacement, time-varying capacitance and charge induced output voltage. The simulated results agreed well with the experimental results, for example, the simulated charge sensitivity is 7.2 × 107 V/C, which is close to the experimental results of 9.5 × 107 V/C with the same design parameters. Using this technique, any variable capacitor-based MEMS sensors can be modelled in Simulink by simply changing the mathematical calculation blocks to implement the in-line equation for the time-dependent capacitance. Therefore, this technique provides a useful tool that allows a fully combined simulation of both mechanical and electronic systems.


  1. 1.
    J.B. Angell, S.C. Terry, P.W. Barth, Silicon micromechanical devices. Sci. Am. 248(4), 44–55 (1983)CrossRefGoogle Scholar
  2. 2.
    Y. Zhu, A. Bazaei, S.O.R. Moheimani, M.R. Yuce, A micromachined nanopositioner with on-chip electrothermal actuation and sensing. IEEE Electron Device Lett. 31(10), 1161–1163 (2010)CrossRefGoogle Scholar
  3. 3.
    T. Veijola, H. Kuisma, J. Lahdenpera, T. Ryhanen, Equivalent circuit model of the squeezed gas film in a silicon accelerometer. Sens. Actuator A 48, 239–248 (1995)CrossRefGoogle Scholar
  4. 4.
    L.F. Che, B. Xiong, Y.L. Wang, System modeling of a vibratory micromachined gyroscope with bar structure. J. Micromech. Microeng. 13, 65–71 (2003)CrossRefGoogle Scholar
  5. 5.
    C. Basso, SPICE analog behavioral modeling of variable passives. Power Electron. Technol. 58 (2005)Google Scholar
  6. 6.
    Y. Zhu, J. Lee, A. Seshia, System-level simulation of a micromachined electrometer using a time-domain variable capacitor circuit model. J. Micromech. Microeng. 17(5), 1059–1065 (2007)CrossRefGoogle Scholar
  7. 7.
    Y. Zhu, J. Lee, A. Seshia, MEMS electrometer system simulation using a time-domain variable capacitor model, in TRANSDUCERS 2007–2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, 2007, pp. 1685–1688Google Scholar
  8. 8.
    H. Zhu, J. Lee, Simulating nonlinearity in MEMS resonators by a charge controlled capacitor. Procedia Eng. 25, 403–406 (2011)CrossRefGoogle Scholar
  9. 9.
    H. Zhu, J. Lee, System-level circuit simulation of nonlinearity in micromechanical resonators. Sens. Actuator A Phys. 186, 15–20 (2012)CrossRefGoogle Scholar
  10. 10.
    H. Paleosky, R.K. Swank, R. Grenchik, Design of dynamic condenser electrometers. Rev. Sci. Instrum. 18(5), 298–314 (1947)CrossRefGoogle Scholar
  11. 11.
    T.R. Ireland, N. Schram, P. Holden, P. Lanc, J. Vila, R. Armstrong, Y. Amelin, A. Latimore, D. Corrigan, S. Clement, J.J. Foster, W. Compston, Charge-mode electrometer measurements of S-isotopic compositions on SHRIMP-SI. Int. J. Mass Spectrom. 359, 26–37 (2014)CrossRefGoogle Scholar
  12. 12.
    J. Jalil, Y. Zhu, C. Ekanayake, Y. Ruan, Sensing of single electrons using micro and nano technologies: a review. Nanotechnology 28(14), 142002 (2017)CrossRefGoogle Scholar
  13. 13.
    G. Zimmerli, T.M. Giles, R.L. Kautz, J.M. Martinis, Noise in the Coulomb blockade electrometer. Appl. Phys. Lett. 61, 237–239 (1992)CrossRefGoogle Scholar
  14. 14.
    A.N. Cleland, M.L. Roukes, A nanometer-scale mechanical electrometer. Nature 392, 160–162 (1998)CrossRefGoogle Scholar
  15. 15.
    H. Kroemmer, A. Erbe, A. Tilke, S. Manus, R.H. Blick, Nanomechanical resonators operating as charge detectors in the nonlinear regime. Europhys. Lett. 50, 101–106 (2000)CrossRefGoogle Scholar
  16. 16.
    Keysight B2980A Series Femto/Picoammeter Electrometer/High Resistance Meter, Keysight Technologies [Online]. Available: Accessed 28 Sept 2018
  17. 17.
    R.J. Schoelkopf, P. Wahlgren, A.A. Kozhevnikov, P. Delsing, D.E. Prober, The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer. Science 280(5367), 1238–1242 (1998)CrossRefGoogle Scholar
  18. 18.
    I. Ahmed, J.A. Haigh, S. Schaal, S. Barraud, Y. Zhu, C.M. Lee, M. Amado, J.W.A. Robinson, A. Rossi, J.J.L. Morton, M.F. Gonzalez-Zalba, Radio-frequency capacitive gate-based sensing. Phys. Rev. Appl. 10(1), 014018 (2018)CrossRefGoogle Scholar
  19. 19.
    J. Jalil, Y. Ruan, H.Z. Li, Y. Zhu, Comprehensive design considerations and noise modeling of preamplifier for MEMS electrometry. IEEE Trans. Instrum. Meas. (2019).
  20. 20.
    H. Palevsky, R.K. Swank, R. Grenchik, Design of dynamic condenser electrometers. Rev. Sci. Instrum. 18, 298–314 (1947)CrossRefGoogle Scholar
  21. 21.
    P.S. Riehl, K.L. Scott, R.S. Muller, R.T. Howe, J.A. Yasaitis, Electrostatic charge and field sensors based on micromechanical resonators. J. Microelectromech. Syst. 12(5), 577–589 (2003)CrossRefGoogle Scholar
  22. 22.
    J. Jalil, Y. Ruan, Y. Zhu, Room-temperature sensing of single electrons using vibrating-reed electrometer in silicon-on-glass technology. IEEE Electron Device Lett. 39(12), 1928–1931 (2018)CrossRefGoogle Scholar
  23. 23.
    G. Jaramillo, C. Buffa, M. Li, F.J. Brechtel, G. Langfelder, D.A. Horsley, MEMS electrometer with femtoampere resolution for aerosol particulate measurements. IEEE Sens. J. 13(8), 2993–3000 (2013)CrossRefGoogle Scholar
  24. 24.
    J.E. Lee, Y. Zhu, A.A. Seshia, A micromechanical electrometer approaching single-electron charge resolution at room temperature, in 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, Wuhan, 2008, pp. 948–951Google Scholar
  25. 25.
    P.S. Riehl, K.L. Scott, R.S. Muller, R.T. Howe, High-resolution electrometer with micromechanical variable capacitor, in Solid-State Sensor, Actuator and Microsystem Workshop (South Carolina) (2002), pp. 305–308Google Scholar
  26. 26.
    J. Lee, Y. Zhu, A. Seshia, Room temperature electrometry with SUB-10 electron charge resolution. J. Micromech. Microeng. 18(2), 025033 (2008)CrossRefGoogle Scholar
  27. 27.
    Y. Zhu, J.E.Y. Lee, A.A. Seshia, A resonant micromachined electrostatic sensor. IEEE Sens. J. 8(9), 1499–1505 (2008)CrossRefGoogle Scholar
  28. 28.
    J. Jalil, Y. Zhu, T. Dinh, Y. Ruan, Development of a vibrating-reed MEMS charge sensor on silicon-on-glass technology, in Proceedings of the 5th International Conference on Sustainable Design and Manufacturing (KES-SDM-18), Gold Coast, Australia, 2018, pp. 126–136Google Scholar
  29. 29.
    J. Lee, Y. Zhu, A. Seshia, Sub-10e charge resolution for room temperature electrometry, in SENSORS, 2007 IEEE, Atlanta, GA, 2007, pp. 821–824Google Scholar
  30. 30.
    J.E.Y. Lee, B. Bahreyni, A.A. Seshia, An axial strain modulated double-ended tuning fork electrometer. Sens. Actuator A Phys. 148(2), 395–400 (2008)CrossRefGoogle Scholar
  31. 31.
    D. Chen, J. Zhao, Y. Wang, Z. Xu, J. Xie, An electrostatic charge sensor based on micro resonator with sensing scheme of effective stiffness perturbation. J. Micromech. Microeng. 27(6), 065002 (2017)CrossRefGoogle Scholar
  32. 32.
    H. Zhang, W. Yuan, J. Huang, B. Li, H. Chang, A high-sensitivity micromechanical electrometer based on mode localization of two degree-of-freedom weakly coupled resonators. J. Microelectromech. Syst. 25(5), 937–946 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Engineering and Built EnvironmentGriffith University, Gold Coast CampusGold CoastAustralia

Personalised recommendations