Micromachined Resonant Electrometers

  • Jin XieEmail author
  • Dongyang Chen


This chapter introduces ultrasensitive charge measurement by frequency modulation on micromachined resonators and oscillators at room temperature. The frequency modulation type resonant electrometers have merits of high resolution and large dynamic range. Fundamentals of vibration system is firstly introduced, including resonance of a beam resonator. Oscillations of the resonator with closed loop methods are introduced to obtain and track resonant frequency. Designs, principles and models of several capacitive resonant electrometers are presented. The axial strain modulation and lateral stiffness perturbation charge measurement schemes are studied respectively. Finally, we introduce a prototype of resonant electrometer employing single anchored circular beam resonator with parallel-plate capacitors as transducers based on lateral stiffness perturbation scheme. The prototype of resonant electrometer has sub-electron resolution and high charge sensitivity. The micromachined resonant electrometers may be key components to develop advanced instruments, such as voltmeters, ammeters and multimeters.



The authors gratefully acknowledge helpful discussions with Ashwin Seshia, Hemin Zhang, Milind Pandit, Guillermo Sobreviela and Jiangkun Sun.


  1. 1.
    A. Menzela, A.T.-H. Lin, P. Estrela, P. Li, A.A. Seshia, Biomolecular and electrochemical charge detection by a micromechanical electrometer. Sens. Actuator B 160, 301 (2011)CrossRefGoogle Scholar
  2. 2.
    Y.Y. Wei, J. Weis, K.V. Klitzing et al., Single-electron transistor as an electrometer measuring chemical potential variations. Appl. Phys. Lett. 71(17), 2514–2516 (1997)CrossRefGoogle Scholar
  3. 3.
    A.K. Naik, M.S. Hanay, W.K. Hiebert, X.L. Feng, M. Roukes, Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol. 4, 445–450 (2009)CrossRefGoogle Scholar
  4. 4.
    F. Krueger, J. Larson, Chipmunk IV: development of and experience with a new generation of radiation area monitors for accelerator applications. Nucl. Instrum. Methods Phys. Res. A 495, 20–28 (2002)CrossRefGoogle Scholar
  5. 5.
    J. Lee, N. Tallarida, X. Chen, L. Jensen, V. Apkarian, Microscopy with a single-molecule scanning electrometer. Sci. Adv. 4, 5472 (2018)CrossRefGoogle Scholar
  6. 6.
    A.N. Vamivakas, Y. Zhao, S. Falt, A. Badolato, J.M. Taylor, M. Atature, Nanoscale optical electrometer. Phys. Rev. Lett. 107, 166802 (2011) Google Scholar
  7. 7.
    A.H. Compton, K.T. Compton, A sensitive modification of the quadrant electrometer: its theory and use. Phys. Rev. 14, 85 (1919)CrossRefGoogle Scholar
  8. 8.
    R.J. Schoelkopf, P. Wahlgren, A.A. Kozhevnikov, P. Delsing, D.E. Prober, The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer. Science 280, 1238 (1998)CrossRefGoogle Scholar
  9. 9.
    Y. Tang, I. Amlani, A.O. Orlov, G.L. Snider, P.J. Fay, Operation of single-walled carbon nanotube as a radio-frequency single-electron transistor. Nanotechnology 18, 445203 (2007)CrossRefGoogle Scholar
  10. 10.
    J.S. Bunch, A.M. Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Electromechanical resonators from graphene sheets. Science 315, 490 (2007)CrossRefGoogle Scholar
  11. 11.
    K. Nishiguchi, A. Fujiwara, Y. Ono, H. Inokawa, Y. Takahashi, Room-temperature-operating data processing circuit based on single-electron transfer and detection with metal-oxide-semiconductor field-effect transistor technology. Appl. Phys. Lett. 88, 183101 (2006)CrossRefGoogle Scholar
  12. 12.
    J. Salfi, I.G. Savelyev, M. Blumin, S.V. Nair, H.E. Ruda, Direct observation of single-charge-detection capability of nanowire field-effect transistors. Nat. Nanotechnol. 5, 737 (2010)CrossRefGoogle Scholar
  13. 13.
    D. Reilly, C. Marcus, Fast single-charge sensing with a rf quantum point contact. Appl. Phys. Lett. 91, 162101 (2007)CrossRefGoogle Scholar
  14. 14.
    G. Podd, S. Angus, D. Williams, A. Ferguson, Charge sensing in intrinsic silicon quantum dots. Appl. Phys. Lett. 96, 082104 (2010)CrossRefGoogle Scholar
  15. 15.
    S. Angus, A. Ferguson, S. Dzurak, G. Clark, A silicon radio-frequency single electron transistor. Appl. Phys. Lett. 92, 112103 (2008)CrossRefGoogle Scholar
  16. 16.
    I. Ahmed, J.A. Haigh, S. Schaal, S. Barraud, Y. Zhu, Ch. Lee, M. Amado, J.W.A. Robinson, A. Rossi, J.J.L. Morton, M.F. Gonzalez-Zalba, Radio-frequency capacitive gate-based sensing. Phys. Rev. Appl. 10, 014018 (2018)CrossRefGoogle Scholar
  17. 17.
    A.N. Cleland, M.L. Roukes, A nanometre-scale mechanical electrometer. Nature 392, 160 (1998)CrossRefGoogle Scholar
  18. 18.
    P. Häkkinen, A. Isacsson, A. Savin, J. Sulkko, P. Hakonen, Charge sensitivity enhancement via mechanical oscillation in suspended carbon nanotube devices. Nano Lett. 15, 1667–1672 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Lee, Y. Zhu, A. Seshia, Room temperature electrometry with SUB-10 electron charge resolution. J. Micromech. Microeng. 18, 025033 (2008)CrossRefGoogle Scholar
  20. 20.
    Y. Zhu, J. Lee, A. Seshia, A resonant micromachined electrostatic charge sensor. IEEE Sens. J. 8, 1499 (2008)Google Scholar
  21. 21.
    G. Jaramillo, C. Buffa, M. Li, F.J. Brechtel, G. Langfelder, D.A. Horsley, MEMS electrometer with femtoampere resolution for aerosol particulate measurements. IEEE Sens. J. 13, 2993 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Jalil, Y. Ruan, Y. Zhu, Room-temperature sensing of single electrons using vibrating-reed electrometer in silicon-on-glass technology. IEEE Electron Device Lett. 39, 1928 (2018)CrossRefGoogle Scholar
  23. 23.
    P. Thiruvenkatanathan, J. Yan, A.A. Seshia, Ultrasensitive mode-localized micromechanical electrometer, in Proceedings IEEE International Frequency Control Symposium (2010), pp. 91–96Google Scholar
  24. 24.
    H. Zhang, J. Huang, W. Yuan, H. Chang, A high-sensitivity micromechanical electrometer based on mode localization of two degree-of-freedom weakly coupled resonators. J. Microelectromech. Syst. 25, 937 (2016)CrossRefGoogle Scholar
  25. 25.
    J. Yang, H. Kang, H. Chang, A micro resonant electrometer with 9-electron charge resolution in room temperature, in Proceedings IEEE Micro Electro Mechanical Systems (MEMS) (2018), pp. 67–70Google Scholar
  26. 26.
    J. Lee, B. Bahreyni, A.A. Seshia, An axial strain modulated double-ended tuning fork electrometer. Sens. Actuator A Phys. 148, 395–400 (2008)CrossRefGoogle Scholar
  27. 27.
    D. Chen, J. Zhao, Y. Wang, J. Xie, An electrostatic charge sensor based on micro resonator with sensing scheme of effective stiffness perturbation. J. Micromech. Microeng. 27, 065002 (2017)CrossRefGoogle Scholar
  28. 28.
    D. Chen, J. Zhao, Y. Wang et al., Electrostatic charge sensor based on micro resonator with sensing scheme of effective stiffness perturbation, in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2017), pp. 1208–1211Google Scholar
  29. 29.
    D. Chen, X. Liu, Y. Wang et al., High sensitivity micro electrometer based on clamped free curved beams resonator with weakened nonlinearity, in 2018 IEEE Micro Electro Mechanical Systems (MEMS) (IEEE, 2018), pp. 1092–1095Google Scholar
  30. 30.
    M. Sansa, E. Sage, E. Bullard, M. Gély, T. Alava, E. Colinet, A. Naik, L. Villanueva, L. Duraffourg, M. Roukes, G. Jourdan, S. Hentz, Frequency fluctuations in silicon nano-resonators. Nat. Nanotechnol. 11, 552 (2016)CrossRefGoogle Scholar
  31. 31.
    Y.S. Patil, S. Chakram, L. Chang et al., Thermomechanical two-mode squeezing in an ultrahigh-Q membrane resonator. Phys. Rev. Lett. 115(1), 017202 (2015)CrossRefGoogle Scholar
  32. 32.
    S.S. Verbridge, H.G. Craighead, J.M. Parpia, A megahertz nanomechanical resonator with room temperature quality factor over a million. Appl. Phys. Lett. 92(1), 013112 (2008)CrossRefGoogle Scholar
  33. 33.
    G. Sobreviela, X. Zou, C. Zhao et al., An ultra-high-quality factor silicon disk resonator, in 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII) (IEEE, 2019), pp. 527–530Google Scholar
  34. 34.
    S.J. Wong, C.H.J. Fox, S. McWilliam, Thermoelastic damping of the in-plane vibration of thin silicon rings. J. Sound Vib. 293(1–2), 266–285 (2006)CrossRefGoogle Scholar
  35. 35.
    A.N. Cleland, M.L. Roukes, A nanometre-scale mechanical electrometer. Nature 392(6672), 160 (1998)CrossRefGoogle Scholar
  36. 36.
    A.K. Naik, M.S. Hanay, W.K. Hiebert et al., Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol. 4(7), 445 (2009)CrossRefGoogle Scholar
  37. 37.
    Y. Wang, Y. Wang, W. Liu et al., An aerosol sensor for PM1 concentration detection based on 3D printed virtual impactor and SAW sensor. Sens. Actuator A Phys. 288, 67–74 (2019)CrossRefGoogle Scholar
  38. 38.
    H. Ding, J. Zhao, B.F. Ju et al., A high-sensitivity biaxial resonant accelerometer with two-stage microleverage mechanisms. J. Micromech. Microeng. 26(1), 015011 (2015)CrossRefGoogle Scholar
  39. 39.
    W. Zhang, J.E.Y. Lee, Frequency-based magnetic field sensing using Lorentz force axial strain modulation in a double-ended tuning fork. Sens. Actuator A Phys. 211, 145–152 (2014)CrossRefGoogle Scholar
  40. 40.
    D. Chen, Y. Wang, X. Chen et al., Temperature-frequency drift suppression via electrostatic stiffness softening in MEMS resonator with weakened duffing nonlinearity. Appl. Phys. Lett. 114(2), 023502 (2019)CrossRefGoogle Scholar
  41. 41.
    X. Liu, D. Chen, D. Yang et al., A computational piezoelectric micro-machined ultrasonic transducer toward acoustic communication. IEEE Electron Device Lett. 40(6), 965–968 (2019)CrossRefGoogle Scholar
  42. 42.
    A. Rahafrooz, S. Pourkamali, High-frequency thermally actuated electromechanical resonators with piezoresistive readout. IEEE Trans. Electron Devices 58(4), 1205–1214 (2011)CrossRefGoogle Scholar
  43. 43.
    J.E.-Y. Lee, A. Seshia, Parasitic feedthrough cancellation techniques for enhanced electrical characterization of electrostatic microresonators. Sens. Actuator A Phys. 156, 36 (2009)CrossRefGoogle Scholar
  44. 44.
    Y. Xu, J.E.-Y. Lee, Single-device and on-chip feedthrough cancellation for hybrid MEMS resonators. IEEE Trans. Ind. Electron. 59, 4930 (2012)CrossRefGoogle Scholar
  45. 45.
    H. Zhang, W. Yuan, Y. Hao, H. Chang, Influences of the feedthrough capacitance on the frequency synchronization of the weakly coupled resonators. IEEE Sens. J. 11, 6081 (2015)CrossRefGoogle Scholar
  46. 46.
    V. Kaajakari, T. Mattila, A. Oja et al., Nonlinear limits for single-crystal silicon microresonators. J. Microelectromech. Syst. 13(5), 715–724 (2004)CrossRefGoogle Scholar
  47. 47.
    I. Kozinsky, H.W.C. Postma, I. Bargatin et al., Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl. Phys. Lett. 88(25), 253101 (2006)CrossRefGoogle Scholar
  48. 48.
    D. Chen, Y. Wang, Y. Guan et al., Methods for nonlinearities reduction in micromechanical beams resonators. J. Microelectromech. Syst. 27(5), 764–773 (2018)CrossRefGoogle Scholar
  49. 49.
    T.A.W. Roessig, Integrated MEMS tuning fork oscillators for sensor applications (1999)Google Scholar
  50. 50.
    C. Zuo, N. Sinha, J. Van der Spiegel et al., Multifrequency pierce oscillators based on piezoelectric AlN contour-mode MEMS technology. J. Microelectromech. Syst. 19(3), 570–580 (2010)CrossRefGoogle Scholar
  51. 51.
    L. He, Y.P. Xu, M. Palaniapan, A state-space phase-noise model for nonlinear MEMS oscillators employing automatic amplitude control. IEEE Trans. Circuits Syst. I Regul. Pap. 57(1), 189–199 (2009)MathSciNetGoogle Scholar
  52. 52.
    C. Zhao, G. Sobreviela, M. Pandit et al., Experimental observation of noise reduction in weakly coupled nonlinear MEMS resonators. J. Microelectromech. Syst. 26(6), 1196–1203 (2017)CrossRefGoogle Scholar
  53. 53.
    G. Sobreviela, C. Zhao, M. Pandit et al., Parametric noise reduction in a high-order nonlinear MEMS resonator utilizing its bifurcation points. J. Microelectromech. Syst. 26(6), 1189–1195 (2017)CrossRefGoogle Scholar
  54. 54.
    M. Pandit, C. Zhao, G. Sobreviela et al., Coupled nonlinear MEMS resonators for sensing, in 2018 IEEE International Frequency Control Symposium (IFCS) (IEEE, 2018), pp. 1–4Google Scholar
  55. 55.
    A. Cowen, G. Hames, D. Monk, S. Wilcenski, B. Hardy, SOIMUMPs Design Handbook (MEMSCAP Inc, Durham, NC, 2011)Google Scholar
  56. 56.
    C.S. Li, L.J. Hou, S.S. Li, Advanced CMOS–MEMS resonator platform. IEEE Electron Device Lett. 33(2), 272–274 (2011)CrossRefGoogle Scholar
  57. 57.
    D. Chen, J. Zhao, Y. Wang, Zh Xu, J. Xie, Sensitivity manipulation on micro-machined resonant electrometer toward high resolution and large dynamic range. Appl. Phys. Lett. 112, 013502 (2018)CrossRefGoogle Scholar
  58. 58.
    D. Chen, J. Zhao, Zh Xu, J. Xie, A micro resonant charge sensor with enhanced sensitivity based on differential sensing scheme and leverage mechanisms. AIP Adv. 6, 105106 (2016)CrossRefGoogle Scholar
  59. 59.
    X.P.S. Su, H.S. Yang, Two-stage compliant microleverage mechanism optimization in a resonant accelerometer. Struct. Multidiscip. Optim. 22(4), 328–334 (2001)CrossRefGoogle Scholar
  60. 60.
    J. Zhao, H. Ding, J. Xie, Electrostatic charge sensor based on a micromachined resonator with dual micro-levers. Appl. Phys. Lett. 106(23), 233505 (2015)CrossRefGoogle Scholar
  61. 61.
    X. Zou, High Resolution Resonant Accelerometer Based on MEMS Technology (University of Cambridge, 2014)Google Scholar
  62. 62.
    Y. Wang, H. Ding, X. Le et al., A MEMS piezoelectric in-plane resonant accelerometer based on aluminum nitride with two-stage microleverage mechanism. Sens. Actuator A Phys. 254, 126–133 (2017)CrossRefGoogle Scholar
  63. 63.
    J.C. McCormac, R.E. Elling, Structural Analysis (Harper and Row, New York, 1984)zbMATHGoogle Scholar
  64. 64.
    M. Manav, G. Reynen, M. Sharma et al., Ultrasensitive resonant MEMS transducers with tuneable coupling. J. Micromech. Microeng. 24(5), 055005 (2014)CrossRefGoogle Scholar
  65. 65.
    D. Chen, Y. Wang, X. Chen et al., Duffing nonlinearity localization via extension energy confinement in an elastic mode semicircular beams resonator. IEEE Electron Device Lett. 40(2), 314–317 (2018)CrossRefGoogle Scholar
  66. 66.
    D. Chen, H. Zhang, J. Sun, M. Pandit et al., A micro resonant electrometer with single-electron charge resolution at room temperature, in Proceedings IEEE Micro Electro Mechanical Systems (MEMS) (2020), pp.182–185Google Scholar
  67. 67.
    D. Chen, H. Zhang, J. Sun, M. Pandit et al., Phase-controlled oscillation in a capacitive nonlinear ring resonator with on-chip feedthrough de-embedding, in Proceedings IEEE Micro Electro Mechanical Systems (MEMS) (2020), pp.773–776Google Scholar
  68. 68.
    L.G. Villanueva, E. Kenig, R.B. Karabalin et al., Surpassing fundamental limits of oscillators using nonlinear resonators. Phys. Rev. Lett. 110(17), 177208 (2013)CrossRefGoogle Scholar
  69. 69.
    D. Antonio, D.H. Zanette, D. López, Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3, 806 (2012)CrossRefGoogle Scholar
  70. 70.
    D.K. Agrawal, J. Woodhouse, A.A. Seshia, Observation of locked phase dynamics and enhanced frequency stability in synchronized micromechanical oscillators. Phys. Rev. Lett. 111(8), 084101 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhou, ZhejiangPeople’s Republic of China

Personalised recommendations