PID Controller Tuning in Smith Predictor Configuration for Stable Processes with Large Time Delay Using IMC Scheme

  • Md Nishat Anwar
  • Somnath Pan
  • Ashraf RazaEmail author
Conference paper


A PID controller design method through IMC scheme to work in Smith predictor configuration for processes having long dead time is presented in this paper. The Smith predictor controller is obtained via IMC scheme, and then the PID controller is derived by frequency response matching. As the approximation of the controller is involved in frequency domain, the method is applicable for both high-order and low-order processes. The efficacy of the method is illustrated through simulation of different examples and performance improvement is observed.


Smith predictor IMC scheme PID controller Approximate frequency response matching 



The authors acknowledge the support from Department of Science and Technology, India (under the project grant no: ECR/16/001547) at NIT Patna, India.


  1. 1.
    Meyer C, Seborg DE (1976) Chem Eng Scie 31:775–778.Google Scholar
  2. 2.
    Hagglund T (1992) IEEE Control System Magazine 12(1):57–60.Google Scholar
  3. 3.
    Smith OJM (1959) ISA J 6(2):28–33.Google Scholar
  4. 4.
    Hang CC, Wong FS (1979) Proc ISA Annual Conf:33–44.Google Scholar
  5. 5.
    Watanabe K, Ito M (1981) IEEE trans Auto Contr 26(6):1261–1266.Google Scholar
  6. 6.
    Astrom KJ, Hang CC, Lim BC (1994) IEEE Trans Auto Contr 39(2):343–345.Google Scholar
  7. 7.
    Matausek MR, Micic AD (1996) IEEE Trans Auto Cont 41(8):1199–1203.Google Scholar
  8. 8.
    Kwak HJ, Whan S, Lee IB (2001) Ind Eng Chem Res 40:1500–1506.Google Scholar
  9. 9.
    Hang CC, Wang QG, Yang XP (2003) Ind Eng Chem Res 42:484–489.Google Scholar
  10. 10.
    Uma S, Chidambaram M, Rao AS (2010) Chem Eng Res and Des 88:592–601.Google Scholar
  11. 11.
    Padhan DG, Majhi S (2011) Electronics Letters 47(17): 959–961.CrossRefGoogle Scholar
  12. 12.
    Gracia CE, Morari M (1982) Ind Eng Chem Process Des Dev 21:308–323.Google Scholar
  13. 13.
    Morari M, Zafiriou E (1989) Robust process control. New Jersey: Prentice-Hall Inc.Google Scholar
  14. 14.
    Wang QG, Hang CC, Yang XP (2001) Automatica 37:2041–2048.CrossRefGoogle Scholar
  15. 15.
    Li Y, Park S, Lee M, Brosilow C (1998) AIChE Journal 44(1):106–115.CrossRefGoogle Scholar
  16. 16.
    Panda RC (2008) Ind Eng Chem Res 47:8684–8692.Google Scholar
  17. 17.
    Kaya I (2003) ISA Trans 42:101–110.Google Scholar
  18. 18.
    Kaya I (2004) Computer and Chemincal Engineering 28:281–290.Google Scholar
  19. 19.
    Anwar MN, Pan S (2015) ISA Transactions 55:175–187.CrossRefGoogle Scholar
  20. 20.
    Anwar MN, Shamsuzzoha M, Pan S (2015) Arabian Journal of Science and Engineering 40:995–1004.Google Scholar
  21. 21.
    Pal J (1986) International Journal of Control 43(1):257–269.CrossRefGoogle Scholar
  22. 22.
    Pan S, Pal J (1995) Appl Math Modelling 19:133–138.Google Scholar
  23. 23.
    Yang X, Xu B, Chiu MS (2011) Ind Eng Chem Res 50:1352–1359.Google Scholar
  24. 24.
    Astrom KJ, Hagglund T (1995) PID Controllers Theory Design and Tuning, 2nd ed. North Carolina: Instrument Society of America, Research Triangle Park.Google Scholar
  25. 25.
    Skogestad S (2003) Journal of Process Control 13:291–309.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Benouarets M, Atherton DP (1994) UKACC International Conference on Control: 795–800.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Institute of TechnologyPatnaIndia
  2. 2.Department of Electrical EngineeringIndian School of MinesDhanbadIndia

Personalised recommendations