Contractive and Non-expansive Mappings

  • P. V. Subrahmanyam
Part of the Forum for Interdisciplinary Mathematics book series (FFIM)


In this chapter, fixed points of contractive and non-expansive mappings are studied, as also the convergence of their iterates.


  1. 1.
    Alspach, D.E.: A fixed point free nonexpansive map. Proc. Am. Math. Soc. 82, 423–424 (1981)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Browder, F.E.: Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. U.S.A. 54, 1041–1044 (1965)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dieudonne, J.: Foundations of Modern Analysis. Academic, New York (1962)zbMATHGoogle Scholar
  4. 4.
    Dinca, G., Mawhin, J.: A constructive fixed point approach to the existence of a triangle with prescribed angle bisector lengths. Bull. Belg. Math. Soc. Simon Stevin 17, 333–341 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dotson Jr., W.J.: Fixed point theorems for nonexpansive mappings on star-shaped subsets of Banach spaces. J. Lond. Math. Soc. 2(4), 408–410 (1972)CrossRefGoogle Scholar
  6. 6.
    Edelstein, M.: On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 37, 74–79 (1962)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Goebel, K.: An elementary proof of the fixed point theorem of Browder and Kirk. Mich. Math. J. 16, 381–383 (1969)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gohde, D.: Uber Fixpunkte bei stetigen Selbst-abbildungen mit kompakten Iterierten. Math. Nachr. 28, 45–55 (1964)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hardy, G.H.: Divergent Series (Oxford, 1949)Google Scholar
  10. 10.
    Ishikawa, S.: Fixed points and iteration of a nonexpansive mapping in a Banach space. Proc. Am. Math. Soc. 59, 65–71 (1976)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kirk, W.A.: A fixed point theorem for mappings which do not increase distances. Am. Math. Mon. 72, 1004–1006 (1965)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Matkowski, J.: Fixed point theorem in a uniformly convex paranormed space and its application. Topol. Appl. 160, 524–531 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Meinardus, G.: Approximation of Functions: Theory and Numerical Methods. Springer, Berlin (1964)Google Scholar
  15. 15.
    Merrifield, J., Rothschild, B., Stein Jr., J.D.: An application of Ramsey’s theorem to the Banach contraction principle. Proc. Am. Math. Soc. 130, 927–933 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mironescu, P., Panaitopol, L.: The existence of a triangle with prescribed angle bisector lengths. Am. Math. Mon. 101, 58–60 (1994)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pasicki, L.: A basic fixed point theorem. Bull. Pol. Acad. Sci. Math. 54, 85–88 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pasicki, L.: Bead spaces and fixed point theorems. Topol. Appl. 156, 1811–1816 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pasicki, L.: Uniformly convex spaces, bead spaces and equivalence conditions. Czechoslov. Math. J. 61(2), 383–388 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pasicki, L.: A comment to Matkowski’s paper. Topol. Appl. 160, 951–952 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Reich, S.: Remarks on fixed points. Att. Acad. Naq. Lincei Rand. Sci. Fis. Mat. Matur. Serie VIII, LII fasc 5, 689–697 (1972)Google Scholar
  22. 22.
    Rosenholtz, I.: On a fixed point problem of D.R. Smart. Proc. Am. Math. Soc. 55, 252 (1976)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Sims, B.: Examples of fixed point free mappings. In: Kirk, W.A., Sims, B. (eds.) Handbook of Metric Fixed Point Theory. Kluwer Academic Publishers, Dordrecht (2001)CrossRefGoogle Scholar
  24. 24.
    Van der Berg, Over dee bepaling van een drichoek, waarvan de deellijmen derdrie supplementaire heoken gegevan zijn Niew Archiev voor Wiskunde, vol. 17, pp. 191–205 (1890)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations