Advertisement

A Novel Approach on Entity Linking for Encyclopedia Infoboxes

  • Xufeng Li
  • Jianlei Yang
  • Richong Zhang
  • Hongyuan Ma
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 957)

Abstract

The Infoboxes in encyclopedia articles contain the structured factoid knowledge and have been the most important source for open domain knowledge base construction. However, if the hyperlink is missing in the Infobox, the semantic relatedness cannot be created. In this paper, we propose an effective model and summarize the most possible features for the infobox entity linking problem. Empirical studies confirm the superiority of our proposed model.

Keywords

Knowledge base Information extraction Entity linking 

Notes

Acknowledgments

This work is supported partly by China 973 program (No.2015CB358700), by the National Natural Science Foundation of China (No. 61772059, 61421003). This paper is also supported by the State Key Laboratory of Software Development Environment of China and Beijing Advanced Innovation Center for Big Data and Brain Computing.

References

  1. 1.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76298-0_52CrossRefGoogle Scholar
  2. 2.
    Bunescu, R.C., Pasca, M.: Using encyclopedic knowledge for named entity disambiguation. In: EACL, vol. 6, pp. 9–16 (2006)Google Scholar
  3. 3.
    Chen, Z., et al.: CUNY-BLENDER TAC-KBP2010 entity linking and slot filling system description. In: Theory and Applications of Categories (2010)Google Scholar
  4. 4.
    Dredze, M., McNamee, P., Rao, D., Gerber, A., Finin, T.: Entity disambiguation for knowledge base population. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 277–285. Association for Computational Linguistics (2010)Google Scholar
  5. 5.
    Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Han, X., Sun, L., Zhao, J.: Collective entity linking in web text: a graph-based method. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 765–774. ACM (2011)Google Scholar
  7. 7.
    He, Z., Liu, S., Li, M., Zhou, M., Zhang, L., Wang, H.: Learning entity representation for entity disambiguation. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, ACL 2013, pp. 30–34 (2013)Google Scholar
  8. 8.
    Huang, H., Heck, L., Ji, H.: Leveraging deep neural networks and knowledge graphs for entity disambiguation. arXiv preprint arXiv:1504.07678 (2015)
  9. 9.
    Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 217–226. ACM (2006)Google Scholar
  10. 10.
    Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge. In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, pp. 233–242. ACM (2007)Google Scholar
  11. 11.
    Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 509–518. ACM (2008)Google Scholar
  12. 12.
    Niu, X., Sun, X., Wang, H., Rong, S., Qi, G., Yu, Y.: Zhishi.me - weaving Chinese linking open data. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7032, pp. 205–220. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25093-4_14CrossRefGoogle Scholar
  13. 13.
    Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans. Knowl. Data Eng. 27(2), 443–460 (2015)CrossRefGoogle Scholar
  14. 14.
    Shen, W., Wang, J., Luo, P., Wang, M.: Linden: linking named entities with knowledge base via semantic knowledge. In: International World Wide Web Conferences, pp. 449–458 (2012)Google Scholar
  15. 15.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge unifying WordNet and Wikipedia. In: International World Wide Web Conferences (2007)Google Scholar
  16. 16.
    Sun, Y., Lin, L., Tang, D., Yang, N., Ji, Z., Wang, X.: Modeling mention, context and entity with neural networks for entity disambiguation. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 1333–1339 (2015)Google Scholar
  17. 17.
    Wang, Z., Wang, Z., Li, J., Pan, J.Z.: Knowledge extraction from chinese Wiki encyclopedias. J. Zhejiang Univ. Sci. C 13(4), 268–280 (2012)CrossRefGoogle Scholar
  18. 18.
    Witten, I., Milne, D.: An effective, low-cost measure of semantic relatedness obtained from Wikipedia links. In: Proceeding of AAAI Workshop on Wikipedia and Artificial Intelligence: An Evolving Synergy, pp. 25–30. AAAI Press, Chicago (2008)Google Scholar
  19. 19.
    Xu, M., et al.: Discovering missing semantic relations between entities in Wikipedia. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 673–686. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41335-3_42CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xufeng Li
    • 1
  • Jianlei Yang
    • 1
  • Richong Zhang
    • 1
  • Hongyuan Ma
    • 2
  1. 1.BDBC and SKLSDE, School of Computer Science and EngineeringBeihang UniversityBeijingChina
  2. 2.CNCERT/CCBeijingChina

Personalised recommendations