Advertisement

Beyond the Data Range Approach to Soft Compute the Reflection Coefficient for Emerged Perforated Semicircular Breakwater

  • Suman KundapuraEmail author
  • Arkal Vittal Hegde
  • Amit Vijay Wazerkar
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 23)

Abstract

Prediction of reflection coefficient (Kr) for emerged perforated semicircular breakwater (EPSBW) using artificial neural network (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) is carried out in the present paper. A new approach has been adopted in the present work using ANN and ANFIS models for the prediction of the reflection coefficient (Kr) for the wave periods beyond the range of the dataset used for training the network. The experimental data obtained for a scaled down EPSBW model from regular wave flume experiments at Marine Structure laboratory of National Institute of Technology Karnataka, Surathkal, Mangaluru, India was used. The ensemble was segregated such that certain higher ranges of wave periods were excluded in the training, and possibility of prediction was checked. The independent input parameters (Hi, T, S, D, R, d, hs) that influence the reflection coefficient (Kr) are considered for training as well as testing, where Hi is the incident wave height, T is the wave period, S is the spacing of perforations, D is the diameter of the perforations, R is the radius of the breakwater, d is the depth of the water and hs is the structure height. The accuracy of predictions of reflection coefficient (Kr) is done based on the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE). The study shows that ANN and ANFIS models may be used for prediction of reflection coefficient Kr of semicircular breakwater for beyond the data range of wave periods used for training. However, ANFIS outperformed ANN model in the prediction of Kr in the case of beyond the data range segregation method.

Keywords

Semicircular breakwater ANN ANFIS Reflection coefficient Beyond the data range Conventional data segregation 

References

  1. 1.
    Sundar V, Ragu V (1998) Dynamic pressures and run-up on semicircular breakwaters due to random waves. Ocean Eng 25(2–3):221–241.  https://doi.org/10.1016/S0029-8018(97)00007-3CrossRefGoogle Scholar
  2. 2.
    Dhinakaran G, Sundar V, Sundaravadivelu R (2002) Dynamic pressures and forces exerted on impermeable and seaside perforated semicircular breakwaters due to regular waves. Ocean Eng 29:1981–2004.  https://doi.org/10.1016/S0029-8018(01)00106-8CrossRefGoogle Scholar
  3. 3.
    Yuan D, Tao J (2003) Wave forces on submerged, alternately submerged, and emerged semicircular breakwaters. Coast Eng 48:75–93.  https://doi.org/10.1016/S0378-3839(02)00169-2CrossRefGoogle Scholar
  4. 4.
    Dhinakaran G, Sundar V, Sundaravadivelu R, Graw KU (2009) Effect of perforations and rubble mound height on wave transformation characteristics of surface piercing semicircular breakwaters. Ocean Eng (Elsevier) 36(15–16):1182–1198.  https://doi.org/10.1016/j.oceaneng.2009.08.005CrossRefGoogle Scholar
  5. 5.
    Young DM, Testik FY (2011) Wave reflection by submerged vertical and semicircular breakwaters. Ocean Eng (Elsevier) 38(10):1269–1276.  https://doi.org/10.1016/j.oceaneng.2011.05.003CrossRefGoogle Scholar
  6. 6.
    Kudumula SR, Mutukuru MRG (2013) Experimental studies on low crested rubble mound, semicircular breakwaters and vertical wall system. 4(3):213–226. http://journals.sagepub.com/doi/pdf/10.1260/1759-3131.4.3.213
  7. 7.
    Yagci O, Mercan DE, Cigizoglu HK, Kabdasli MS (2005) Artificial intelligence methods in breakwater damage ratio estimation. Ocean Eng 32(17–18):2088–2106.  https://doi.org/10.1016/j.oceaneng.2005.03.004CrossRefGoogle Scholar
  8. 8.
    Erdik T (2009) Fuzzy logic approach to conventional rubble mound structures design. Expert Syst Appl (Elsevier Ltd.) 36(3):4162–4170.  https://doi.org/10.1016/j.eswa.2008.06.012CrossRefGoogle Scholar
  9. 9.
    Mandal S, Patil SG, Hegde AV (2009) Wave transmission prediction of multilayer floating breakwater using neural network, International conference in Ocean Engineering (ICOE 2009). IIT Madras, Chennai, IndiaGoogle Scholar
  10. 10.
    Deo MC (2010) Artificial neural networks in coastal and ocean engineering. Indian J Geo-Marine Sci 39(December):589–596. http://nopr.niscair.res.in/handle/123456789/10807
  11. 11.
    Kim DH, Kim YJ, Hur DS (2014) Artificial neural network based breakwater damage estimation considering tidal level variation. Ocean Eng Elsevier 87:185–190.  https://doi.org/10.1016/j.oceaneng.2014.06.001CrossRefGoogle Scholar
  12. 12.
    Raju B, Hegde AV, Chandrashekar O (2015) Computational intelligence on hydrodynamic performance characteristics of emerged perforated quarter circle breakwater. Procedia Eng (Elsevier B.V.) 116(1):118–124.  https://doi.org/10.1016/j.proeng.2015.08.272CrossRefGoogle Scholar
  13. 13.
    Sylaios G, Bouchette F, Tsihrintziz VA, Denamiel C (2009) A fuzzy inference system for wind wave modeling. Ocean Eng 36:1358–1365.  https://doi.org/10.1016/j.oceaneng.2009.08.016.  https://doi.org/10.1016/j.oceaneng.2009.08.016
  14. 14.
    Patil SG, Mandal S, Hegde AV, Alavandar S (2011) Neuro-fuzzy based approach for wave transmission prediction of horizontally interlaced multilayer moored floating pipe breakwater. Ocean Eng (Elsevier) 38(1):186–196.  https://doi.org/10.1016/j.oceaneng.2010.10.009CrossRefGoogle Scholar
  15. 15.
    Zanuttigh B, Mizar S, Briganti R (2013) A neural network for the prediction of wave reflection from coastal and harbor structures. Coast Eng (Elsevier B.V.) 80:49–67. http://dx.doi.org/10.1016/j.coastaleng.2013.05.004CrossRefGoogle Scholar
  16. 16.
    Sooraj M (2009) Sliding stability and hydrodynamic performance of emerged semicircular breakwater. M. Tech Thesis, NITK, Surathkal, Mangaluru, IndiaGoogle Scholar
  17. 17.
    Sreejith (2015) Sliding stability and hydrodynamic performance of emerged semicircular breakwater. M. Tech Thesis, NITK, Surathkal, Mangaluru, IndiaGoogle Scholar
  18. 18.
    Vishal K (2010) Hydrodynamic performance characteristics of one side and two side perforated semicircular breakwater. M. Tech Thesis, NITK, Surathkal, Mangaluru, IndiaGoogle Scholar
  19. 19.
    Nishanth N (2008) Sliding stability and hydrodynamic performance of emerged semicircular breakwater M. Tech Thesis, NITK, Surathkal. Mangaluru. IndiaGoogle Scholar
  20. 20.
    Azamathulla H, Asce M, Ghani AA (2011) ANFIS-Based approach for predicting the scour depth at culvert outlets 2(February), pp 35–40.  https://doi.org/10.1061/(asce)ps.1949-1204.0000066CrossRefGoogle Scholar
  21. 21.
    Karsoliya S (2012) Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture 3:714–717. http://ijettjournal.org/volume-3/issue-6/IJETT-V3I6P206.pdf
  22. 22.
    Panchal FS, Panchal, M. (2014) Review on methods of selecting number of hidden nodes in artificial neural network 3(11):455–464. http://www.ijcsmc.com/docs/papers/November2014/V3I11201499a19.pdf
  23. 23.
    Hiremath S, Patra SK (2010) Transmission rate prediction for cognitive radio using adaptive neural fuzzy inference system. In: 2010 international conference on industrial and information systems (ICIIS). http://ieeexplore.ieee.org/document/5578727/
  24. 24.
    Bataineh KM, Naji M, Saqer M (2011) A Comparison study between various fuzzy clustering algorithms. Jordan J Mech Indust Eng 5(4):335–343. http://jjmie.hu.edu.jo/files/v5n4/JJMIE-230-09.pdf
  25. 25.
    Hiremath SM, Patra SK, Mishra AK (2012) Extended date rate prediction for cognitive radio using ANFIS with Subtractive Clustering. In: 5th International conference on computers and devices for communication (CODEC), Kolkata, pp 1–4. http://dspace.nitrkl.ac.in/dspace/bitstream/2080/1821/1/Paper_cordic.pdf
  26. 26.
    Rahmat OK, Hassan A, Alauddin M, Ali M (2005) Generation of fuzzy rules with subtractive clustering. J Teknologi 43(D):143–153.  https://doi.org/10.11113/jt.v43.782
  27. 27.
    Vernieuwe H, Georgieva O, De Baets B, Pauwels VRN, Verhoest NEC, De Troch P (2005) Comparison of data-driven Takagi—Sugeno models of rainfall—discharge dynamics. J Hydrol 302:173–186.  https://doi.org/10.1016/j.jhydrol.2004.07.001CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Suman Kundapura
    • 1
    Email author
  • Arkal Vittal Hegde
    • 1
  • Amit Vijay Wazerkar
    • 1
  1. 1.Department of Applied Mechanics and HydraulicsNational Institute of Technology KarnatakaSurathkal, MangaloreIndia

Personalised recommendations