Advertisement

Application of an Efficient Numerical Model for CO2 Sequestration in Deep Saline Aquifers

  • P. Dinesh
  • M. R. BeheraEmail author
  • P. G. Ranjith
  • N. Muthu
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 22)

Abstract

In this paper, the element-free Galerkin (EFG) method is applied to study the vertically averaged multiphase flow of CO2 and brine in the deep saline aquifer. The methodology involves solving two governing partial differential equations (PDEs), namely pressure and saturation equations sequentially using implicit pressure and explicit saturation (IMPES) solution strategy. The governing PDEs are obtained by combining mass conservation (continuity equation) and momentum conservation (Darcy’s law of multiphase extension) equations. In order to capture the asymptotic pressure behaviour near injection well, a local nodal refinement zone was introduced around the well. The computed pressure and average saturation were compared with an existing approximate grid-based FEM and extended FEM (XFEM) numerical solutions to demonstrate the robustness of the developed model.

Keywords

Multiphase flow Carbon sequestration Element-free Galerkin method Caprock 

References

  1. 1.
    Bachu S, Adams JJ (2003) Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers Manag 44(20):3151–3175CrossRefGoogle Scholar
  2. 2.
    IPCC (2005) IPCC special report on carbon dioxide capture and storage, prepared by the working Group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 442Google Scholar
  3. 3.
    Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37(155):141–158MathSciNetCrossRefGoogle Scholar
  4. 4.
    Levin D (1998) The approximation power of moving least-squares. Math Comput Am Math Soc 67(224):1517–1531MathSciNetCrossRefGoogle Scholar
  5. 5.
    Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Meth Eng 37(2):229–256MathSciNetCrossRefGoogle Scholar
  6. 6.
    Muthu N, Maiti SK, Falzon BG, Guiamatsia I (2013) A comparison of stress intensity factors obtained through crack closure integral and other approaches using eXtended element-free Galerkin method. Comput Mech 52(3):587–605MathSciNetCrossRefGoogle Scholar
  7. 7.
    Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dolbow J, Belytschko T (1999) Numerical integration of the Galerkin weak form in meshfree methods. Comput Mech 23(3):219–230MathSciNetCrossRefGoogle Scholar
  9. 9.
    Celia MA, Nordbotten JM (2009) Practical modeling approaches for geological storage of carbon dioxide. Groundwater 47(5):627–638CrossRefGoogle Scholar
  10. 10.
    Gasda SE, Nordbotten JM, Celia MA (2009) Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration. Comput Geosci 13(4):469–481CrossRefGoogle Scholar
  11. 11.
    Bandilla KW, Celia MA, Birkholzer JT, Cihan A, Leister EC (2015) Multiphase modeling of geologic carbon sequestration in saline aquifers. Groundwater 53(3):362–377CrossRefGoogle Scholar
  12. 12.
    Ladubec C, Gracie R, Craig J (2015) An extended finite element method model for carbon sequestration. Int J Numer Meth Eng 102(3–4):316–331MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nordbotten JM, Celia MA (2011) Geological storage of CO2: modeling approaches for large-scale simulation. Wiley, HobokenCrossRefGoogle Scholar
  14. 14.
    Ladubec C, Gracie R (2017) Stabilized finite element methods for vertically averaged multiphase flow for carbon sequestration. Int J Numer Methods EngGoogle Scholar
  15. 15.
    Dunavant DA (1985) High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int J Numer Meth Eng 21(6):1129–1148MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • P. Dinesh
    • 1
    • 2
    • 3
  • M. R. Behera
    • 2
    Email author
  • P. G. Ranjith
    • 3
  • N. Muthu
    • 4
  1. 1.IITB-Monash Research AcademyIIT BombayMumbaiIndia
  2. 2.Department of Civil EngineeringIIT BombayMumbaiIndia
  3. 3.Department of Civil EngineeringMonash UniversityMelbourneAustralia
  4. 4.Department of Mechanical EngineeringIIT GuwahatiGuwahatiIndia

Personalised recommendations