Micro-electrical Discharge Milling Operation

  • Mahavir Singh
  • Vijay Kumar Jain
  • Janakarajan RamkumarEmail author
Part of the Materials Forming, Machining and Tribology book series (MFMT)


This chapter introduces a novel variant of electric discharge machining (EDM) process entitled to electrical discharge milling (ED-Milling) operation. Although the mechanism of material removal is essentially identical to that of conventional EDM process, the intricacies arise predominantly pertaining to the multiple zones involved simultaneously during the sparking phenomenon. Unlike the Ram/die-sinking EDM or ED-Drilling operations comprising merely unidirectional control of the tool electrode, the ED-Milling operation is characterized by the synchronized movement of the tool in multiple axes (generally x-, y-, and z-axis) besides the high-speed rotation about its axis. This controlled motion of the tool electrode governed by the programmed instructions similar to the computerized numerical control (CNC) of conventional milling operation makes it a prospective contender especially for fabrication of 3D micro/macro-profiles. Incorporating a comparatively simpler cylindrical or in exceptional instances rectangular/square cross-sectional tool electrode to generate a complex three-dimensional feature is the distinctive capability of this operation. The chapter comprises the basic introduction to EDM process in conjunction with ED-Milling operation, different techniques of micro-tool production as well as micro-fabrication, suitability of ED-Milling operation for a variety of sophisticated areas, analysis of tool wear and the possible applications areas of the process.


Micro-channels Tool wear Computer numerical control Taper angle Micro-tools Debris 



Capacitance of the capacitor (µF)


Discharge voltage (V)


Machining current (A)


Pulse on time (µs or ns)


Average machining depth of a single layer (µm or mm)


Compensated depth of the tool considering the longitudinal wear (µm or mm)


Cross-sectional area of the tool in the x-y plane (µm2 or mm2)


Cross-sectional area of the workpiece in the x-y plane (µm2 or mm2)


Wear ratio (ratio of the volume of tool material removed to the volume of workpiece removed)


Compensation accuracy (µm or mm)


Machining length (µm or mm)






Advanced machining processes


Inter-electrode gap


Electric discharge grinding


Abrasive jet machining


Water jet machining


Abrasive water jet machining


Lithographie, Galvanoformung, Abformung


Heat-affected zone




  1. 1.
    Davoudinejad A, Tosello G, Parenti P, Annoni M (2017) 3D finite element simulation of micro end-milling by considering the effect of tool run-out. Micromachines 8(6):1–20CrossRefGoogle Scholar
  2. 2.
    Jain VK (2007) Advanced machining processes. Allied Publishers Private Limited, New-DelhiGoogle Scholar
  3. 3.
    Jain VK (2008) Advanced (non-traditional) machining processes. In: Machining. Springer, London, pp 299–327Google Scholar
  4. 4.
    Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43(13):1287–1300CrossRefGoogle Scholar
  5. 5.
    Ferraris E, Castiglioni V, Ceyssens F, Annoni M, Lauwers B, Reynaerts D (2013) EDM drilling of ultra-high aspect ratio micro holes with insulated tools. CIRP Ann—Manuf Technol 62(1):191–194CrossRefGoogle Scholar
  6. 6.
    Karthikeyan G, Ramkumar J, Dhamodaran S, Aravindan S (2010) Micro electric discharge milling process performance: an experimental investigation. Int J Mach Tools Manuf 50(8):718–727CrossRefGoogle Scholar
  7. 7.
    Rahman M, Asad ABMA, Masaki T, Saleh T, Wong YS, Senthil Kumar A (2010) A multiprocess machine tool for compound micromachining. Int J Mach Tools Manuf 50(4):344–356CrossRefGoogle Scholar
  8. 8.
    Asad ABMA, Masaki T, Rahman M, Lim HS, Wong YS (2007) Tool-based micro-machining. J Mater Process Technol 192–193:204–211CrossRefGoogle Scholar
  9. 9.
    Jain VK (2018) Introduction to micromachining. Narosa Publication House, New DelhiGoogle Scholar
  10. 10.
    Gad-el-Hak M (2002) The MEMS handbook. CRC PresssGoogle Scholar
  11. 11.
    Egashira K, Mizutani K (2005) EDM at low open-circuit voltage. Int J Electr Mach 10:21–25CrossRefGoogle Scholar
  12. 12.
    Egashira K, Matsugasako A, Tsuchiya H, Miyazaki M (2006) Electrical discharge machining with ultralow discharge energy. Precis Eng 30:414–420CrossRefGoogle Scholar
  13. 13.
    Zahiruddin M, Kunieda M (2012) Comparison of energy and removal efficiencies between micro and macro EDM. CIRP Ann—Manuf Technol 61:187–190CrossRefGoogle Scholar
  14. 14.
    Reddy MS, Jain VK, Lal GK (1988) Tool design for ECM: correction factor method. J Eng Ind 110(2):111–118CrossRefGoogle Scholar
  15. 15.
    Câmara MA, Rubio JCC, Abrão AM, Davim JP (2012) State of the art on micromilling of materials, a review. J Mater Sci Technol 28(8):673–685CrossRefGoogle Scholar
  16. 16.
    Liu Q, Zhang Q, Zhu G, Wang K, Zhang J, Dong C (2016) Effect of electrode size on the performances of micro EDM. Mater Manuf Process 31(4):391–396CrossRefGoogle Scholar
  17. 17.
    Hernandez P, Campos D, Socorro P, Benitez A, Ortega F, Díiz N, Marrero MD (2015) Electroforming applied to manufacturing of microcomponents. Procedia Eng 132:655–662CrossRefGoogle Scholar
  18. 18.
    Uriarte L, Herrero S, Ivanov A, Oosterling H, Staemmler L, Tang PT, Allen D (2006) Comparison between microfabrication technologies for metal tooling. Proc Inst Mech Eng, Part C: J Mech Eng Sci 220(11):1665–1676CrossRefGoogle Scholar
  19. 19.
    Jain VK, Sidpara A, Balasubramaniam R, Lodha GS, Dhamgaye VP, Shukla R (2014) Micromanufacturing: a review—Part I. Proc Inst Mech Eng, Part B: J Eng Manuf 228(9):973–994CrossRefGoogle Scholar
  20. 20.
    Rahman M, Lim HS, Neo KS, Senthil Kumar A, Wong YS, Li XP (2007) Tool-based nanofinishing and micromachining. J Mater Process Technol 185(1–3):2–16CrossRefGoogle Scholar
  21. 21.
    Khanra AK, Pathak LC, Godkhindi MM (2007) Microanalysis of debris formed during electrical discharge machining (EDM). J Mater Sci 42(3):872–877CrossRefGoogle Scholar
  22. 22.
    Karthikeyan G, Garg AK, Ramkumar J, Dhamodaran S (2012) A microscopic investigation of machining behavior in Micro ED-milling process. J Manuf Process 14(3):297–306CrossRefGoogle Scholar
  23. 23.
    Tao J, Shih AJ, Ni J (2008) Experimental study of the dry and near-dry electrical discharge milling processes. J Manuf Sci Eng 130(1):011002CrossRefGoogle Scholar
  24. 24.
    Mohri N, Fukuzawa Y, Tani T, Saito N, Furutani K (1996) Assisting electrode method for machining insulating ceramics. CIRP Ann 45(1):201–204CrossRefGoogle Scholar
  25. 25.
    Sabur A, Ali MY, Maleque MA, Moudood MA (2014) Micro-EDM for micro-channel fabrication on nonconductive ZrO2 ceramics. Int J Automot Mech Eng 10:1841–1851CrossRefGoogle Scholar
  26. 26.
    Schubert A, Zeidler H, Hahn M, Hackert-Oschätzchen M, Schneider J (2013) Micro-EDM milling of electrically nonconducting zirconia ceramics. Procedia CIRP 6:297–302CrossRefGoogle Scholar
  27. 27.
    König W, Dauw DF, Levy G, Panten U (1988) EDM-Future Steps towards the Machining of Ceramics. CIRP Ann—Manuf Technol 37(2):623–631CrossRefGoogle Scholar
  28. 28.
    Liu YH, Ji R, Li Q, Yu L, Li X (2008) Electric discharge milling of silicon carbide ceramic with high electrical resistivity. Int J Mach Tools Manuf 48(12–13):1504–1508CrossRefGoogle Scholar
  29. 29.
    Liang SY, Shih AJ (2016) Analysis of machining and machine tools. Springer, BerlinCrossRefGoogle Scholar
  30. 30.
    Shen Y, Liu Y, Zhang Y, Dong H, Sun W, Wang X (2015) High-speed dry electrical discharge machining. Int J Mach Tools Manuf 93:19–25CrossRefGoogle Scholar
  31. 31.
    Kunieda M, Yoshida M (1996) Electrical discharge machining in gas. CIRP Ann—Manuf Technol 46(1):143–146CrossRefGoogle Scholar
  32. 32.
    Kunleda M, Mlyashl Y, Takaya T (2003) High speed 3D milling by Dry EDM. CIRP Ann—Manuf Technol 52(1):147–150CrossRefGoogle Scholar
  33. 33.
    Shen Y, Liu Y, Sun W, Zhang Y, Dong H, Zheng C (2016) High-speed near dry electrical discharge machining. J Mater Process Technol 233:9–18CrossRefGoogle Scholar
  34. 34.
    Pattabhiraman A, Marla D, Kapoor SG (2016) Atomized dielectric spray-based electric discharge machining (spray-EDM) for sustainable manufacturing. In: Proceedings of ASME 2015 international manufacturing science and engineering conference, vol 1: Processing, Charlotte, North Carolina, USA, 8–12 June 2015Google Scholar
  35. 35.
    Marashi H, Jafarlou DM, Sarhan AAD, Hamdi M (2016) State of the art in powder mixed dielectric for EDM applications. Precis Eng 46:11–33CrossRefGoogle Scholar
  36. 36.
    Yeo SH, Murali M (2003) A new technique using foil electrodes for the electro-discharge machining of micro grooves. J Micromech Microeng 16:N1CrossRefGoogle Scholar
  37. 37.
    Murali M, Yeo SH (2004) A novel spark erosion technique for the fabrication of high aspect ratio micro-grooves. Microsyst Technol 10(8–9):628–632CrossRefGoogle Scholar
  38. 38.
    Flaño O, Ayesta I, Izquierdo B, Sánchez JA, Zhao Y, Kunieda M (2018) Improvement of EDM performance in high-aspect ratio slot machining using multi-holed electrodes. Precis Eng 51:223–231CrossRefGoogle Scholar
  39. 39.
    Kunieda M, Lauwers B, Rajurkar KP, Schumacher BM (2005) Advancing EDM through fundamental insight into the process. CIRP Ann—Manuf Technol 54(2):64–87CrossRefGoogle Scholar
  40. 40.
    Pandit SM, Rajurkar KP (1983) A stochastic approach to thermal modeling applied to electro-discharge machining. J Heat Transf 105(3):555–562CrossRefGoogle Scholar
  41. 41.
    Yu ZY, Masuzawa T, Fujino M (1998) Micro-EDM for three-dimensional cavities—development of uniform wear method. CIRP Ann 47:169–172CrossRefGoogle Scholar
  42. 42.
    Narasimhan J, Yu Z, Rajurkar KP (2005) Tool wear compensation and path generation in micro and macro EDM. J Manuf Process 7(1):75–82CrossRefGoogle Scholar
  43. 43.
    Yu H, Luan JJ, Li JZ, Zhang YS, Yu ZY, Guo DM (2010) A new electrode wear compensation method for improving performance in 3D micro EDM milling. J Micromech Microeng 20:055011CrossRefGoogle Scholar
  44. 44.
    Zhang L, Du J, Zhuang X, Wang Z, Pei J (2015) Geometric prediction of conic tool in micro-EDM milling with fix- length compensation using simulation. Int J Mach Tools Manuf 89:86–94CrossRefGoogle Scholar
  45. 45.
    Pei J, Zheng B, He L (2013) Arithmetic and experimental study of fix-length compensation based on conical bottom shape of electrode in micro-EDM. In: ASME 2013 international mechanical engineering congress and exposition, vol 2A: Advanced manufacturing, San Diego, California, USA, 15–21 Nov 2013Google Scholar
  46. 46.
    Pei J, Zhuang X, Zhang L, Zhu Y, Liu Y (2018) An improved fix-length compensation method for electrical discharge milling using tubular tools. Int J Mach Tools Manuf 124:22–32CrossRefGoogle Scholar
  47. 47.
    Karthikeyan G, Sambhav K, Ramkumar J, Dhamodaran S (2011) Simulation and experimental realization of Microchannels using a ED-milling process. Proc Inst Mech Eng, Part B J Eng Manuf 225(12):2206–2219CrossRefGoogle Scholar
  48. 48.
    Ho C, Tai Y (1998) Micro-electro-mechanical-systems (MEMS) and fluid flow. Annu Rev Fluid Mech 30:579–612CrossRefGoogle Scholar
  49. 49.
    Liu K, Lauwers B, Reynaerts D (2009) Process capabilities of Micro-EDM and its applications. Int J Adv Manuf Technol 47(1–4):11–19Google Scholar
  50. 50.
    Patel D, Jain VK, Ramkumar J (2016) Micro texturing on metallic surfaces: state of the art. Proc Inst Mech Eng, Part B: J Eng Manuf 232(6):941–964CrossRefGoogle Scholar
  51. 51.
    Ali MY (2009) Fabrication of microfluidic channel using micro end milling and micro electrical discharge milling. Int J Mech Mater Eng 4:93–97Google Scholar
  52. 52.
    Hung J, Yang T, Li K (2011) Studies on the fabrication of metallic bipolar plates-Using micro electrical discharge machining milling. J Power Sources 196(4):2070–2074CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mahavir Singh
    • 1
  • Vijay Kumar Jain
    • 1
    • 2
  • Janakarajan Ramkumar
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.Department of Mechanical EngineeringMaulana Azad National Institute of Technology BhopalBhopalIndia

Personalised recommendations