Advertisement

Relations of the Extended Voigt Function with Other Families of Polynomials and Numbers

  • M. A. PathanEmail author
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

Author presents a new family of generalized Voigt functions related to recently introduced k-Fibonacci–Hermite numbers, h(x)-Fibonacci–Hermite polynomials, Lucas–Hermite numbers and h(x)-Lucas–Hermite polynomials where h(x) is a polynomial with real coefficients. The multivariable extensions of these results provide a natural generalization and unification of integral representations which may be viewed as a new relationship for the product of two different families of Lucas and Hermite polynomials. Some interesting explicit series representations, integrals and identities are obtained. The resulting formulas allow a considerable unification of various special results which appear in the literature.

Notes

Acknowledgements

The first author M. A. Pathan would like to thank the Department of Science and Technology, Government of India, for the financial assistance for this work under project number SR/S4/MS:794/12.

References

  1. 1.
    G. Dattoli, C. Chiccoli, S. Lorenzutta, S. Maino, A. Torre, Generalized Bessel functions and generalized Hermite polynomials. J. Math. Anal. Appl. 178, 509–516 (1993)MathSciNetCrossRefGoogle Scholar
  2. 2.
    G. Dattoli, P.E. Ricci, C. Cesarano, Differential equations for Appell type polynomials. Fractional Calc. Appl. Anal. 5(1), 69–75 (2002)MathSciNetzbMATHGoogle Scholar
  3. 3.
    G. Dattoli, A. Torre, Theory and Applications of Generalized Bessel Functions (ARACNE, Rome, Italy, 1996)Google Scholar
  4. 4.
    G. Dattoli, A. Torre, M. Carpanese, Operational rules and arbitrary order Hermite generating functions. J. Math. Anal. Appl. 227, 98–111 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M.S. El Naschie, On a class of general theories for high energy particle physics. Chaos, Solitons Fractals 14(4), 649–668 (2002)CrossRefGoogle Scholar
  6. 6.
    A. Erdélyi et al., Tables of Integral Transforms, vol. I (Mc Graw Hill, New York, Toronto, London, 1954)Google Scholar
  7. 7.
    A. Erdélyi et al., Tables of Integral Transforms, vol. II (Mc Graw Hill, New York, Toronto, London, 1954)Google Scholar
  8. 8.
    S. Falcon, A. Plaza, On the Fibonacci k-numbers. Chaos, Solitons Fractals 32(5), 1615–1624 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Falcon, A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle. Chaos, Solitons Fractals 33(1), 38–49 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Klusch, Astrophysical spectroscopy and neutron reactions, integral transforms and Voigt functions. Astrophys. Space Sci. 175, 229–240 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    T. Koshy, Fibonacci and Lucas numbers with applications (John Wiley and Sons Inc, New York, U.S.A., 2001)CrossRefGoogle Scholar
  12. 12.
    A. Nalli, P. Haukkanen, On generalized Fibonacci and Lucas polynomials. Chaos, Solitons Fractals 42(5), 3179–3186 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    M.A. Pathan, The multivariable Voigt functions and their representations. Scientia Series A 12, 9–15 (2006)MathSciNetzbMATHGoogle Scholar
  14. 14.
    M.A. Pathan, M. Garg, S. Mittal, On unified representations of the multivariable Voigt functions. East-West J. Math. 8, 49–59 (2006)MathSciNetzbMATHGoogle Scholar
  15. 15.
    M.A. Pathan, M. Kamarujjama, M.K. Alam, Multiindices and multivariable presentations of Voigt functions. J. Comput. Appl. Math. 160(1–2), 251–257 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    M.A. Pathan, A. Khan Waseem, On Generalized Hermite-Fibonacci and Hermite-Lucas polynomials, CommunicatedGoogle Scholar
  17. 17.
    M.A. Pathan, M.J.S. Shahwan, New representations of the Voigt Functions. Demonstatio Math. 39, 75–80 (2006)MathSciNetzbMATHGoogle Scholar
  18. 18.
    A.P. Prudnikov, Integral and Series, vol. 2 (Gorden and Breech Sciences Publisher, New York, Special Functions, 1986)Google Scholar
  19. 19.
    J. Sandor, B. Crisci, Handbook of Number Theory, vol. II (Kluwer Academic Publishers, Dordrecht Boston and London, 2004)Google Scholar
  20. 20.
    H.M. Srivastava, H.L. Manocha, A Treatise on Generating Functions (Ellis Horwood Limited, Chichester, 1984)zbMATHGoogle Scholar
  21. 21.
    H.M. Srivastava, E.A. Miller, A unified presentation of the Voigt functions. Astrophys Space Sci. 135, 111–115 (1987)MathSciNetCrossRefGoogle Scholar
  22. 22.
    H.M. Srivastava, M.A. Pathan, M. Kamarujjama, Some unified presentations of the generalized Voigt functions. Comm. Appl. Anal. 2, 49–64 (1998)MathSciNetzbMATHGoogle Scholar
  23. 23.
    S. Vajda, Fibonacci and Lucas numbers and the Golden Section theory and applications (Ellis Horwood Limited, Chichester, 1989)zbMATHGoogle Scholar
  24. 24.
    A. Winsche, Generalized Hermite polynomials associated with functions of parabolic cylinder. Appl. Math. Comput. 141, 197–213 (2003)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Centre for Mathematical and Statistical Sciences (CMSS)ThrissurIndia

Personalised recommendations