Dynamic Models of Offshore Platforms

  • Bao-Lin Zhang
  • Qing-Long Han
  • Xian-Ming Zhang
  • Gong-You Tang


In this chapter, two dynamic models of offshore platforms and several required lemmas are introduced for investigating active control strategies in this book. In the first dynamic model, only the first dominant vibration mode of an offshore steel jacket platform with an AMD mechanism is taken into account [79]. This model is utilized to design active controllers to attenuate wave-induced vibration of the offshore platform. In the second dynamic model, the first and the second vibration modes of an offshore steel jacket platform subject to an active TMD mechanism are considered [65, 72]. By considering parametric perturbations of the system and external disturbance, several uncertain nonlinear models for the offshore platform are developed. Such models are used to design active controllers to reduce vibration amplitudes of the offshore platform subject to self-excited hydrodynamic forces and/or external disturbance.


  1. 11.
    Abdel-Rohman, M.: Structural control of a steel jacket platform. Struct. Eng. Mech. 4(2), 125–138 (1996)CrossRefGoogle Scholar
  2. 65.
    Zribi, M., Almutairi, N., Abdel-Rohman, M., et al.: Nonlinear and robust control schemes for offshore steel jacket platforms. Nonlinear Dyn. 35(1), 61–80 (2004)CrossRefGoogle Scholar
  3. 72.
    Terro, M.J., Mahmoud, M.S., Abdel-Rohman, M.: Multi-loop feedback control of offshore steel jacket platforms. Comput. Struct. 70(2), 185–202 (1999)CrossRefGoogle Scholar
  4. 79.
    Li, H.-J., Hu, S.-L., Jakubiak, C.: H 2 active vibration control for offshore platform subjected to wave loading. J. Sound Vib. 263(4), 709–724 (2003)MathSciNetCrossRefGoogle Scholar
  5. 81.
    Ma, H., Tang, G.-Y., Zhao, Y.-D.: Feedforward and feedback optimal control for offshore structures subjected to irregular wave forces. Ocean Eng. 33(8–9), 1105–1117 (2006)CrossRefGoogle Scholar
  6. 82.
    Ma, H., Tang, G.-Y., Hu, W.: Feedforward and feedback optimal control with memory for offshore platforms under irregular wave forces. J. Sound Vib. 328(4–5), 369–381 (2009)CrossRefGoogle Scholar
  7. 90.
    Zhang, B.-L., Ma, L., Han, Q.-L.: Sliding mode H control for offshore steel jacket platforms subject to nonlinear self-excited wave force and external disturbance. Nonlinear Anal. Real World Appl. 14(1), 163–178 (2013)MathSciNetCrossRefGoogle Scholar
  8. 91.
    Zhang, B.-L., Huang, Z.-W., Han, Q.-L.: Delayed non-fragile H control for offshore steel jacket platforms. J. Vib. Control 21(5), 959–974 (2015)MathSciNetCrossRefGoogle Scholar
  9. 99.
    Zhang, B.-L., Han, Q.-L., Zhang, X.-M., et al.: Integral sliding mode control for offshore steel jacket platforms. J. Sound Vib. 331(14), 3271–3285 (2012)CrossRefGoogle Scholar
  10. 100.
    Zhang, X.-M., Han, Q.-L., Han, D.-S.: Effects of small time-delays on dynamic output feedback control of offshore steel jacket structures. J. Sound Vib. 330(16), 3883–3900 (2011)CrossRefGoogle Scholar
  11. 101.
    Zhang, B.-L., Han, Q.-L., Zhang, X.-M., et al.: Sliding mode control with mixed current and delayed states for offshore steel jacket platforms. IEEE Trans. Contr. Syst. Technol. 22(5), 1769–1783 (2014)CrossRefGoogle Scholar
  12. 126.
    Sarpkaya, T., Isaacson, M. (eds.): Mechanics of Wave Forces on Offshore Structures. Van Nostrand Reihhold, New York (1981)Google Scholar
  13. 127.
    Chakrabarti, S.K. (ed.): Hydrodynamics of Offshore Structures. Springer, Berlin (1987)Google Scholar
  14. 128.
    Xie, L.: Output feedback H control of systems with parameter uncertainty. Int. J. Control 63(4), 741–750 (1996)MathSciNetCrossRefGoogle Scholar
  15. 129.
    Lancaster, P., Lerer, L., Tismenetsky, M.: Factored forms for solutions of AX − XB = C and X − AXB = C in companion matrices. Linear Algebra Appl. 62, 19–49 (1984)MathSciNetCrossRefGoogle Scholar
  16. 130.
    Gahinet, P., Apkarian, P.: A linear matrix inequality approach to H control. Int. J. Robust Nonlinear Control 4, 421–448 (1994)MathSciNetCrossRefGoogle Scholar
  17. 131.
    Han, Q.-L.: Absolute stability of time-delay systems with sector-bounded nonlinearity. Automatica 41, 2171–2176 (2005)MathSciNetCrossRefGoogle Scholar
  18. 132.
    Zhang, X.M., Wu, M., She, J.H., et al.: Delay-dependent stabilization of linear systems with time-varying state and input delays. Automatic 41(8), 1405–1412 (2005)MathSciNetCrossRefGoogle Scholar
  19. 133.
    Peng, C., Fei, M.-R.: An improved result on the stability of uncertain T-S fuzzy systems with interval time-varing delay. Fuzzy Sets Syst. 212, 97–109 (2012)CrossRefGoogle Scholar
  20. 134.
    Zhang, X.M., Han, Q.-L.: Novel delay-derivative-dependent stability criteria using new bounding techniques. Int. J. Robust Nonlinear control 23(13), 1419–1432 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Bao-Lin Zhang
    • 1
  • Qing-Long Han
    • 2
  • Xian-Ming Zhang
    • 2
  • Gong-You Tang
    • 3
  1. 1.China Jiliang UniversityHangzhouChina
  2. 2.Swinburne University of TechnologyMelbourneAustralia
  3. 3.Ocean University of ChinaQingdaoChina

Personalised recommendations